Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

Effect of decomposition temperature on crystallite size and strain for alumina

https://doi.org/10.32792/utq/utj/vol10/1/6

Sattar A.Abass

Science department, college of Basic education, Waist University sattarabass@yahoo.com

Ghazi K.Saeed

Science department, college of Basic education, Waist University phyghazi@ymail.com

Abstract

The crystallite size and strain of Al_2O_3 ceramic powder have been determined from x-ray line-broadening analysis at different decomposition temperatures. The Al_2O_3 powder have been prepared from decomposition of aluminum hydroxide $Al(OH)_3$ at different temperature which have been characterized by X-Ray diffraction (XRD) and Differential, Thermal Analysis (DTA) methods. Deconvolution of the experimental profiles by Fourier cosine coefficients has resulted in corrected values of crystallite size. The crystallite size has been found to increase with increasing decomposition temperature from 38nm at 1673k to 73nm at 1873k. Strain on the other hand decrease from 3.04×10^{-3} at 1673k to 1.14×10^{-3} at 1873k. Estimation of micro hardness on compacts of different crystallite size has shown that crystallite size may influence the bearing load that compact can endure.

Keywords: crystallite size, strain, different decomposition temperatures, thermal analysis

1- Introduction:-

Aluminum minerals have been used extensively in the construction of open-hearth furnace for steel industry and in the production of rubber; plastics fine chemicals, paper pulp, protective surface on the metal, boards, and in water treatment.

Aluminum oxide is usually produced by calcining $Al(OH)_3$ above 673k .The reactivity of the produced Al_2O_3 depended on the calcinations temperature, and above 1673k it is in the unreactive from which is used as basic refractory bricks^[1-6].

Determination of the crystallite size and morphology of Al₂O₃ prepared by calcinations of aluminum hydroxide, made by use of x-ray diffraction method and electron microscopy have shown that crystallite size extend over a range of values from 50 to 1000°A and the morphology of the decomposed product is similar to that of the parent compound^[7]. The present investigation aimed to calculate crystallite size, strain

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

and morphology from decomposed aluminum hydroxide and to show if these have any influence on the hardness properties.

2-Experimental:

To characterize the reactants and their decomposition, different techniques were used. They were the automated x-ray powder diffraction system for recording diffraction pattern with copper K_α radiation ($\lambda=1.5406\mbox{\ensuremath{A^\circ}}\mbox{)}.$ In addition to the necessary treatment on the scanned peaks , the simultaneous TG-DTA system for recording TG and DTA curves under static air , heating rate of $10^{\circ}\mbox{C/min}$ and alumina as reference material .

Assessment of mechanical properties of powder compacts by Vickers micro hardness was made with applied load of 100 gram and square diamond pyramid with opposite faces at 136°.

3-Analysis of Line Breath

The extent of line breadth was taken as a measure due to small-crystallite of Al_2O_3 powders. Measurements were based on the FWHM (Full Width at Half Maximum) of three diffraction lines namely (104) , (113) and (116) . The measured breadths were corrected for instrumental effects using the breadth from normal crystallite size specimen by using the equation given by Azarof^[8].

$$B_{WC} = [(B_{\text{meas.}} - B_{\text{instr.}})(B_{\text{meas.}}^2 - B_{\text{instr.}}^2)^{1/2}]^{1/2}$$

Where $B_{meas.}$ is the experimentally measured breadth and $B_{instr.}$ is the half width of the instrumental breadth.

The crystallite size and strain can be calculated from formula ^[9], when certain line shape is assumed such as Gaussian or Cauchy functions.

$$L_{WC} = \frac{K\lambda}{B_{WC}Cos\theta}$$

$$\epsilon = \frac{B_{WC}}{4\tan\theta}$$

Where L_{WC} is the crystallite size, λ is the wavelength of the radiation, B_{WC} is the corrected breadth (in radians), θ is the Bragg angle, K is the Scherer constant whose value $2(In2/\pi)^{1/2}=0.94^{[10]}$, and ϵ is the strain.

In practice the line shape is not truly Gaussian or Cauchy and in order to proceed with the correction for instrument function , deconvolution of the experimental profiles was performed by the method proposed by Stokes $(1948)^{[11]}$, and Warren $(1969)^{[10]}$ and the Fourier cosine coefficients A_L were plotted against L where L is defined as $^{[12]}$.

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

$$L = \frac{n\lambda}{2(\sin\theta_2 - \sin\theta_1)}$$

Where θ_2 and θ_1 are the limits over which the line is recorded, and n is the Fourier harmonic number. Calculation of A_L was made with the aid of computer program written specifically for this purpose.

The corrected cosine coefficient A_L can be written as:

$$A_L = A_L^S A_L^D$$

Where A_L^S is the size coefficient and A_L^D is the distortion. So the crystallite size L_f in direction perpendicular to the diffracting planes considered can be obtained from the initial slope of the curve of A_L^S versus L or A_L versus L, if we neglect the distortion coefficient.

$$\frac{1}{L_{\rm f}} = \left| \frac{dA_{\rm L}}{dL} \right|_{\rm L-0}$$

Since the distribution is Gaussian, strain also contributes to the broadening of the profile. As multiple orders are not available, r.m.s. strains were calculated following Mitra and Misra (1967) [13] where:

$$A_L = \exp(-2\pi^2 I^2 L_L^2) \qquad \text{and} \qquad$$

$$Z_L = \frac{L \in d}{d}$$

Where ∈=r.m.s. strain, and I=order of reflection.

4-Results and Discussion:

Figure (1) shows the DTA, TG, and DDTA curves as recorded for $Al(OH)_3$. Figure (2) shows the X-Ray diffraction patterns of $Al(OH)_3$ at 1673K, 1773K and 1873K. Figure (3) shows the variation of the FWHM with decomposition temperature for Al_2O_3 from aluminum hydroxide. For the three reflections (104), (113) and (116) the half width decreases sharply up to $1800^{\circ}C$ and slowly up to $1870^{\circ}C$. The variation of FWHM with decomposition time of α - Al_2O_3 shows in Figures (4). Figure (5) shows the plot of the Fourier cosine coefficient A_L with L for different temperatures, for alumina from aluminum hydroxide. The (104) reflection has been taken as a representative example only. The crystallite sizes at different temperatures were determined from the initial slopes of the curves. The results are shown in table (1) with crystallite size for (104), (113), and (116) reflection as well. The different sizes with respect to different reflections indicate the anisotropic nature of the crystallites in these directions.

Temperature has significant effect on the crystallite sizes and strain of Al₂O₃ irrespective of the starting materials. As the temperature increases, the size of the

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

crystallites perpendicular to (104), (113), and (116) reflections increases steadily. The inverse behavior is observed for strain. The crystallite sizes and strain values obtained in this work are in agreement with those for Al₂O₃, MgO, ZnO, MnO2 found in the literature [14-17].

In table (1) we have presented values of crystallite size and strain obtained from Fourier method for the purpose of comparison.

Table (2) observed that Vickers micro hardness number of Al_2O_3 powder compacts depend on the crystallite size determined at certain temperature with the lower crystallite size of $40A^\circ$ having higher hardness number of 884 and higher size of $70A^\circ$ having hardness number of 731. This means that compacts made from finer powders endure better loads.

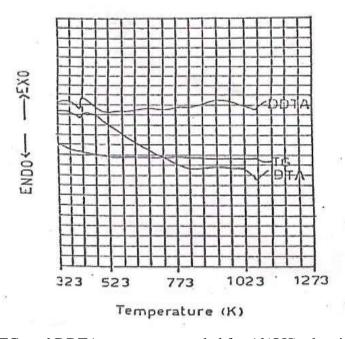


Figure (1) DTA, TG, and DDTA curves as recorded for Al(OH)₃, heating rate 10 K/min.

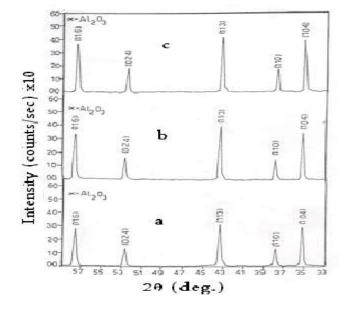


Figure (2) X-Ray diffraction patterns of Al (OH) $_3$ at 1673K, 1773K, and 1873K (a,b and c respectively)

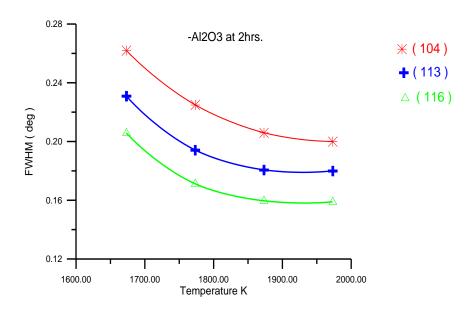
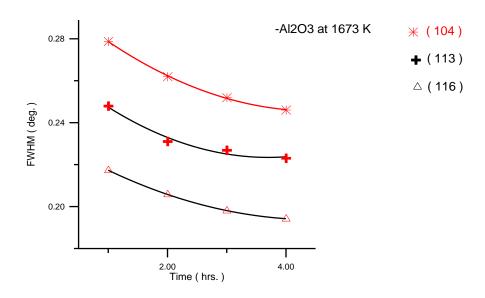



Figure (3) Variation of FWHM with decomposition temperature of α -Al₂O₃.

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

Figure (4) Variation of FWHM with decomposition time of α -Al₂O₃.

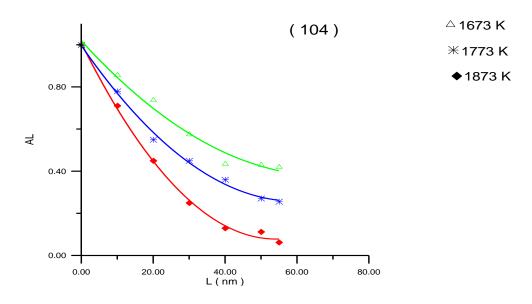


Figure (5) plot of A_L against L in α-Al₂O₃ obtained at 1673K, 1773K and 1873K for 104 reflection.

Table (1) Crystallite size and r.m.s. strain as calculated by Fourier analysis for α-Al₂O₃ yielded from thermal decomposition of Al(OH)₃.

Reflection	Temperature	Crystallite size	r.m.s.
hkl	(K)	(nm)	strain x10 ⁻³
104	1673	38	3.04
	1773	52	2.66
	1873	68	2.55
113	1673	43	2.60
	1773	60	2.30
	1873	72	2.16
116	1673	47	1.58
	1773	63	1.25
	1873	73	1.14

Table (2) Vickers hardness number of α -Al₂O₃ derived from Al(OH)₃ at 1673K, 1773K and 1873K.

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

Temperature	Υ (μm)	VHN	Crystallite Size	Mean VHN
(K)			(nm)	
1673	14	946	40	884
	15	824		
	14.5	882		
1773	16	742	50	779
	15	824		
	15.5	771		
1873	16.5	680	70	731
	15.5	771		
	16	742		

References

- [1] T.P. Whaley,(1981),"Speciality lnorganic chemicals", ed by R.Thomson, pp. 122-163.
- [2] W.E.Worral L2m Construction chemicals, Inc. Grib it and Grib it AO, non. Slie aluminium oxide floor treatment (1998).
- [3] D.J. Driscoll, et al., (1985), J. AM Chem. Soc., 107, 58.
- [4] P. Maass, M. Meyer, A. Bunde "physics A 266(1999) 197-202.
- [5] Paul pajunen, P. Eng. "Eco-Tec inc., "AEC 2001 "Finishing work shop (2001).
- [6] Michael van Dijk , a Quality Control Analyst Almatis Rotterdam Laboratory (2011) "Steel production , Cement production , non-ferrous metal production .
- [7] C.F. Jones, et al., (1980), phil. Mag., A 42,267.
- [8] I.V. Azaroff, (1968), "Elements of X-Ray Crystallography", McGraw-Hill Book Company .
- [9] TH.H.DE. Keijser, et al., (1982), J.Appl. Cryst., 15, 308.
- [10] B.E. Warren (1969), "X-Ray Diffraction", p.251-314 Addison-Welsiey.
- [11] A.R. Stokes, (1948), proc. Phys. Soc., London, 61, 382.
- [12] D. Louer, et al., (1983), J. Appl. Cryst., 61,183.
- [13] G.B. Mitra and N.K. Misra (1967), Acta Cryst., 22, 454
- [14] C.G. Shull (1946), phys. Rev. 70,679.
- [15] B.S. Acfarya and L.D. pradhan (1986), J. Appl. Cryst. 19,214.
- [16] S.A. Abass, Ph. D. Thesis University of Saddam (1997).
- [17] S.M. Musa, M. Sc. Thesis University of Baghdad (1999).

Al_2O_3 تأثير التفكك الحراري على المقاس الحبيبي والانفعال للألو مينا

غازي كمال سعيد قسم العلوم-كلية التربية الأساسية جامعة واسط ستار عبود عباس قسم العلوم-كلية التربية الأساسية جامعة واسط

الخلاصة

University of Thi-Qar Journal Vol.10 No.1 Mar 2015 Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

تم تحديد الحجم الحبيبي والانفعال لمسحوق الالومينا بواسطة تحليل الاتساع في خط حيود الأشعة السينية عند درجات حرارة مختلفة . حضر مسحوق الالومينا من التفكك الحراري لهيدروكسيد الألمنيوم $Al(OH)_3$ عند درجات حرارة مختلفة والذي شخص بواسطة جهازي حيود الأشعة السينية وجهاز التحليل الحراري التفاضلي .

درست قيم المقاس البلوري بأخذ جذر متوسط مربع الانفعال بواسطة تحليل الاتساع في خط حيود الأشعة السينية باستخدام طريقة فورير. وجد إن المقاس البلوري يزداد بزيادة التفكك الحراري من 38 نانومتر عند درجة حرارة 1673 كلفن إلى 73 نانومتر عند 1873 كلفن. من جانب أخر الانفعال يقل من $10x3.04^{-3}$ عند 1873 كلفن إلى 10x3.04 كلفن يعطي المسحوق المكبوس للالومينا صلادة مجهريه تزداد كلما قل الحجم الحبيبي .