ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

Some of permutation polynomials of the form

 $D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_1)^{s_1} + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_2)^{s_2} \text{ over } \mathbb{F}_2^{2m}$

Hasan H. Mushatet

Ministry of Education, Thi-Qar Education Directorate, Iraq.

hasanalhelaly@utq.edu.iq

https://doi.org/10.32792/utq/utj/vol17/1/2

ABSTRACT

By this paper, we intend structure of some class of permutation polynomials which having the form $D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_1)^{s_1} + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_2)^{s_2} \text{ over } \mathbb{F}_2^{2m}$ depend on (AGW criterion).

Keywords: Permutation polynomial, Dickson polynomial, Reversed Dickson polynomial, Trace function.

1. Introduction

Let q be a prime power, and $q = p^n$, p is a prime positive integer number, and let \mathbb{F}_q be a finite field, then a polynomial $f \in \mathbb{F}_q[x]$ is called a permutation polynomial (PP) over \mathbb{F}_q if It is bijective.

There are an important applications of permutation polynomial in a several areas as cryptography, coding theory, communication engineering, and combinatorial design theory. The first studies on permutation polynomial was by Hermite[3][7], after that, Dickson worked on this field[4][6]

Akbary, Ghioca and Wang structured a criterion (which known as the AGW criterion) to investigate by permutation polynomials. [1][7]

The target of this paper is to constructing some classes of permutation polynomials of the form

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

 $D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_1)^{s_1} + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_2)^{s_2}$

Over $\mathbb{F}_{2^{2m}}$, when m, n, s_1, s_2 , and k are positive integers, α_1 and α_2 are odd positive numbers in $\mathbb{F}_{2^{2m}}$ with n = 2m, and a fixed $a \in \mathbb{F}_{2^{2m}}$. In this paper we will depend on AGW(criterion) with some propositions and lemmas to our proofs.

2. Preliminaries

The trace function from \mathbb{F}_{p^n} into \mathbb{F}_{p^m} denoted by :

 $Tr_m^n(x) = x + x^{p^m} + x^{p^{2m}} + \dots + x^{p^{(\frac{n}{m-1})m}}$, where m, n are two positive integers and m | n, and p is a prime number.

Let π be a subset of \mathbb{F}_{p^n} and define by:

Then for each element $\alpha \in \pi$, satisfy:

For a prime power, a function $\emptyset(x) = \sum_{i=0}^{s} a_i x^{q^i}$, when a_0, a_1, \dots, a_s in \mathbb{F}_q then we called $\emptyset(x)$ a \mathbb{F}_q – linear polynomial over \mathbb{F}_{p^m} .[1][8]

Lemma (2.1) [2]

Let *m*, *n* are positive integers, m | n, and let $\emptyset(x)$ be a \mathbb{F}_q - linear polynomial over \mathbb{F}_{p^m} , $h(x) \in \mathbb{F}_{p^n}[x]$ be a polynomial such that $h(x^{p^m} - x) \in \mathbb{F}_{p^m} \setminus \{0\}$, and

 $g(x) \in \mathbb{F}_{p^n}[x]$ be any polynomial, for all $x \in \mathbb{F}_{p^n}$.

Then $h(x^{p^m} - x)\phi(x) + g(x^{p^m} - x)$ is a permutation of \mathbb{F}_{p^n} if and only if:

- (i) $\emptyset(x)$ induces a permutation polynomial of \mathbb{F}_{p^m} ;
- (ii) $h(x)\phi(x) + g(x)^{p^m} g(x)$ permutes π which defined in (1).

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

Lemma(2.2) [2]

Let , *n* , and *t* are positive integers with *m* | n , s_i be nonnegative integer, $1 \le i \le t$

And a fixed $\delta \in \mathbb{F}_{p^n}$ then $f(x) = \sum_{i=1}^{t} (x^{p^m} - x + \delta)^{s_i} + x$ is a permutation polynomial over \mathbb{F}_{p^n} if and only if :

 $\sum_{i=1}^{t} ((x+\delta)^{p^{m_{s_i}}} - (x+\delta)^{s_i}) + x \text{ permutes } .$

Lemma(2.3)[10]

Let , *n*, *s*, and *k* are positive integers with n = 2m, And a fixed $\delta \in \mathbb{F}_{p^n}$ then the polynomial $f(x) = x + (Tr_m^n(x)^k + \delta)^{sp^m}$ induces a permutation over $\mathbb{F}_{p^{2m}}$

if and only if $g(x) = (x^k + \alpha)^{sp^m}(x^k + \alpha)^s + x$ be a bijection on the set :

$$S = \{ x \in \mathbb{F}_{p^{2m}} : x^{p^m} - x = 0 \}$$

Proposition(2.1)[10]

Let $\alpha \in \mathbb{F}_{2^{2m}}$, and *m* is an odd then the polynomial

$$f(x) = x + (Tr_m^n(x)^{\frac{2^m+1}{3}} + \alpha)^{2^{m-1}+1}$$
 permutes $\mathbb{F}_{p^{2m}}$.

Proposition(2.2)[6]

Assume that $\alpha \in \mathbb{F}_{2^{2m}}$, and let *m* is an odd then the polynomial

$$f(x) = x + (Tr_m^n(x)^{2^{\frac{m+1}{3}-1}} + \alpha)^{2^{\frac{m+1}{3}+1}} \text{ permutes } \mathbb{F}_{p^{2m}}.$$

Proposition(2.3)[10]

When $\alpha_1, \alpha_2 \in \mathbb{F}_{2^{2m}}$, and s_1, s_2, k_1, k_2 are positive integers then:

 $f(x) = x + (Tr_m^n(x)^{k_1} + \alpha_1)^{s_1} + (Tr_m^n(x)^{k_2} + \alpha_2)^{s_2}$ is a permutation polynomial over $\mathbb{F}_{2^{2m}}$ if and only if :

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

 $h(x) = x + (Tr_m^n(x)^{k_1} + \alpha_1)^{s_1}$ permutes $\mathbb{F}_{2^{2m}}$.

Definition (2.1) [5]

Let $a \in \mathbb{F}_q$, for any positive integers n, k we can define an n - th Dickson Polynomial of the (k + 1) - th kind over \mathbb{F}_q as:

$$D_{n,k}(x,a) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-jk}{n-j} \binom{n-j}{j} (-a)^j x^{n-2j}$$

Definition (2.2) [5][9]

Let $a \in \mathbb{F}_q$, and $n, k \in \mathbb{Z}^+$ then the n - th Reversed Dickson Polynomial from the (k + 1) - th kind over \mathbb{F}_q can be define as:

$$D_{n,k}(x,a) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-jk}{n-j} \binom{n-j}{j} (-1)^j a^{n-2j} x^j$$

Lemma (2.4) [6]

$$D_{n,k}(x,a) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-jk}{n-j} {\binom{n-j}{j}} (-a)^j x^{n-2j}$$

when $a \in \mathbb{F}_{2^n}$ is a permutation polynomial over \mathbb{F}_{2^n} if and only if gcd $(n, 2^{2n} - 1) = 1$.

Example(2.1) : Let n = even number then that yield

 $gcd(n, 2^{2n} - 1) = 1.$

For example n = 4 then $gcd(4, 2^{2 \times 4} - 1) = gcd(4, 255) = 1$

That implies $D_{4,k}(x, a)$ is permutation polynomial over \mathbb{F}_{2^n} when $a, x \in \mathbb{F}_{2^n}$, and $k \in \mathbb{Z}^+$.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

Lemma(2.5)[6]

Let m be an odd positive integer number then

$$\gcd\left(2^{\frac{m+1}{2}}+1,2^m-1\right)=1.$$

3. PPs of the form $D_{n,k}(x, \alpha) + (Tr_m^n(D_{n,k}(x, \alpha)^k + \alpha)^s)$

Proposition (3.1)

Let , *n* , *s* , and $k \in \mathbb{Z}^+$, and a fixed $a \in \mathbb{F}_{p^n}$ where n = 2m , and *m* is odd then the polynomial:

$$D_{n,k}(x,a) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-jk}{n-j} \binom{n-j}{j} (-a)^j x^{n-2j}$$

Is a permutation polynomial if and only if $gcd\left(2^{\frac{m+1}{2}}, 2^m - 1\right) = 1$.

Proof: Suppose that $D_{n,k}(x, a)$ be a permutation polynomial then:

 $gcd(n, 2^{2n} - 1) = 1$ (Lemma 2.4) That implies to $gcd(2^{\frac{m+1}{2}}, 2^m - 1) = 1$

Now assume that $gcd\left(2^{\frac{m+1}{2}}, 2^m - 1\right) = 1$ then by (Lemma 2.4) we obtain $D_n(x, a)$ is a permutation polynomial.

Then $D_{n,k}(x, a)$ is a permutation polynomial

Example(3.1) : Let n = 2m, and m is odd positive integer number then that yield $gcd\left(2^{\frac{m+1}{2}} + 1, 2^m - 1\right) = 1$.

For example m = 3 then $gcd\left(2^{\frac{3+1}{2}} + 1, 2^3 - 1\right) = gcd(5, 7) = 1$.

That is equivalence to $gcd(n, 2^{2n} - 1)$ when n = 4, which implies

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

 $gcd(4, 2^{2 \times 4} - 1) = gcd(4, 255) = 1$

Thus $D_{6,k}(x, a)$ is permutation polynomial over $\mathbb{F}_{2^{2m}}$ when $a, x \in \mathbb{F}_{2^{2m}}$, and $k \in \mathbb{Z}^+$. m = 5 then $gcd\left(2^{\frac{5+1}{2}} + 1, 2^5 - 1\right) = gcd(8,31) = 1$.

Example(3.2) : In the following Table 3.2 we take some values for m, n, k and a, when a is odd to find the form of Dickson Polynomial $D_{n,k}(x, a)$:

Table 3.2

т	n = 2m	k	а	$\mathbb{F}_{2^{2m}}$	$D_{n,k}(x,a)$
3	6	1	1	\mathbb{F}_{2^6}	$x^6 + 59x^4 + 6x^2 + 63$
5	10	2	3	$\mathbb{F}_{2^{10}}$	$ \begin{array}{r} x^{10} + 1000x^8 + 189x^6 + 484x^4 \\ + 405x^2 \end{array} $
7	14	3	5	$\mathbb{F}_{2^{14}}$	$\begin{array}{l} x^{14} + 16329x^{12} + 1100x^{10} + \\ 7009x^8 + 9866x^6 + \\ 10982x^4 + 10626x^2 + 12589 \end{array}$
9	18	4	7	$\mathbb{F}_{2^{18}}$	$\begin{array}{r} x^{18} + 262046x^{16} + 3675x^{14} + \\ 199718x^{12} + 81299x^{10} + \\ 182058x^8 + 172114x^6 + \\ 123252x^4 + 149121x^2 + 229006 \end{array}$

Example(3.3) : In the following Table 2.2 we take some values for m, n, k and a, when a is *even* to find the form of Dickson Polynomial $D_{n,k}(x, a)$:

Table 3.3

т	n = 2m	k	а	$\mathbb{F}_{2^{2m}}$	$D_{n,k}(x,a)$
3	6	1	2	\mathbb{F}_{2^6}	$x^6 + 54x^4 + 24x^2 + 56$

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

5	10	2	4	F 2 ¹⁰	$ \begin{array}{r} x^2(x^8 + 992x^6 + 336x^4 + 768x^2 \\ + 256) \end{array} $
7	14	3	6	$\mathbb{F}_{2^{14}}$	$\begin{array}{l} x^{14} + 16318x^{12} + 1584x^{10} + \\ 184x^8 + 5280x^6 + 10560x^4 + \\ 2176x^2 + 1408 \end{array}$
9	18	4	8	$\mathbb{F}_{2^{18}}$	$x^{18} + 262032x^{16} + 4800x^{14} + 168960x^{12} + 61440x^{10} + 196608x^{8}$

Proposition (3.2)

Let , *n* , *s* , and $k \in \mathbb{Z}^+$, and a fixed $a \in \mathbb{F}_{p^n}$, *a is even* where n = 2m, and *m* is odd then the polynomial:

$$D_{n,k}(x,a) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n-jk}{n-j} \binom{n-j}{j} (-1)^j a^{n-2j} x^j$$

Is a permutation polynomial if and only if $gcd\left(2^{\frac{m+1}{2}}, 2^m - 1\right) = 1$.

Proof: Suppose that $D_{n,k}(x, a)$ be a permutation polynomial then:

 $gcd(n, 2^{2n} - 1) = 1$ (Lemma2.4)

That implies to $gcd\left(2^{\frac{m+1}{2}}, 2^m - 1\right) = 1$

Now since $gcd\left(2^{\frac{m+1}{2}}, 2^m - 1\right) = 1$ then by (Lemma 2.4) we obtain $D_n(x, a)$ is a permutation polynomial

Then $D_{n,k}(x, a)$ is a permutation polynomial

Example(3.4) : In the following Table 3.4 we take some values for m, n, k and a, when a is odd to find the form of reversed Dickson Polynomial $D_{n,k}(x, a)$:

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

Table 3.4

т	n = 2m	k	а	$\mathbb{F}_{2^{2m}}$	$D_{n,k}(x,a)$
3	6	1	2	\mathbb{F}_{2^6}	$63x^3 + 24x^2 + 48x$
5	10	2	4	$\mathbb{F}_{2^{10}}$	$80x^4$
7	14	3	6	$\mathbb{F}_{2^{14}}$	$x^{7} + 15880x^{6} + 1760x^{5} + 9856x^{4} + 5376x^{3} + 12288x^{2} + 4096x$
9	18	4	8	$\mathbb{F}_{2^{18}}$	$2x^7(129056x + 90112x^2)$

4. **PPs of the form** $D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^{k_1} + \alpha_1)^{s_1} + (Tr_m^n(D_{n,k}(x,a)^{k_2} + \alpha_2)^{s_2})$

Proposition (4.1)

For a positive integers m, n, s, and k with n = 2m and a fixed $a \in \mathbb{F}_{p^n}$, and an odd $\alpha \in \mathbb{F}_{p^n}$ then :

$$f(x) = D_{n,k}(x, a) + (Tr_m^n (D_{n,k}(x, a)^k + \alpha)^s)$$

induces a permutation polynomial on $\mathbb{F}_{2^{2m}}$ if and only if

 $g(x) = [(D_{n,k}(x,a))^k + \alpha]^{s,p^m} + [(D_{n,k}(x,a))^k + \alpha]^s + (D_{n,k}(x,a) \text{ is}$ one-to-one and onto over the set $\pi = \{l \in \mathbb{F}_{p^{2m}} : l^{p^m} - l = 0\}$.

Proof: since $\pi = \{l \in \mathbb{F}_{p^{2m}} : l^{p^m} - l = 0\}$ then we can write :

 $\pi = \{l^{p^m} + l \colon l \in \mathbb{F}_{p^{2m}}\}.$

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

Suppose that $\Psi(x) = \overline{\Psi}(x) = l^{p^m} + l = Tr_m^n(D_{n,k}(x, a))$ then we can note it verified the following diagram:

For any $\delta \in \pi$ we have $\Psi^{-1}(\delta) = \{x \in \mathbb{F}_{p^{2m}} : x^{p^m} + x = \delta\}$, so that

$$f(x) = D_{n,k}(x, a) + (Tr_m^n(D_{n,k}(x, a)^k + \alpha)^s \text{ is one-to-one over } \Psi^{-1}(\delta).$$

By (AGW criterion) *f* is a permutation on $\mathbb{F}_{p^{2m}}$ if and only if g(x) is

a permutation over π .

Lemma (4.1)

Let $m, n, s_1, s_2, k_1, and k_2$, are positive integers, α_1 and α_2 are odd positive numbers in $\mathbb{F}_{2^{2m}}$ with n = 2m, and a fixed $a \in \mathbb{F}_{2^{2m}}$ then:

 $f(x) = D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^{k_1} + \alpha_1)^{s_1} + (Tr_m^n(D_{n,k}(x,a)^{k_2} + \alpha_2)^{s_2})^{s_2}$ is permutes $\mathbb{F}_{2^{2m}}$

if and only if it induces a bijection :

 $g(x) = D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_1)^{s_1} \text{ over } \mathbb{F}_{2^{2m}}.$

Proof: Let f(x) permutes $\mathbb{F}_{2^{2m}}$ then (By proposition 2.3) we obtain :

 $g(x) = D_{n,k}(x,a) + (Tr_m^n(D_{n,k}(x,a)^k + \alpha_1)^{s_1} \text{ permutes } \mathbb{F}_{2^{2m}}.$

Now let g(x) permutes $\mathbb{F}_{2^{2m}}$ then (By Lemma 3.2) g is a bijection on the set $\pi = \{l \in \mathbb{F}_{2^{2m}}: l^{p^m} - l = 0\}$

Then by (AGW Criterion) we obtain f is permutes $\mathbb{F}_{2^{2m}}$.

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

Example(4.1) : In the following Table 4.1 we take some values for $m, n, k, k_1, and a$ to find $Tr_m^n(D_{n,k}(x, a))^{k_1}$, where $D_{n,k}(x, a)$ be Dickson polynomial :

Table	4.1
-------	-----

т	п	k	а	<i>k</i> ₁	$Tr_m^n(D_{n,k}(x,a))^{k_1}$
3	6	1	1	1	$52x^2 + 18x^4 + 6x^6 + 35x^8 + 34x^{10} + 4x^{12})$
5	10	2	2	2	$ \begin{array}{r} x^{24} (256x^4 + 352x^8 + 256x^{10} + 336x^{12} + 896x^{14} \\ + 3x^{16} + 256) \end{array} $
7	14	3	4	4	$\begin{array}{r} 4096x^{60} + 14336x^{62} + 1792x^{64} + 15104x^{66} \\ + 4208x^{68} + 6904x^{70} + 1418x^{72} \\ + 9188x^{74} + 5214x^{76} + 5488x^{78} \\ + 2278x^{80} + 15988x^{82} + 4x^{84} \end{array}$

Example(4.2) : In the following Table 4.2 we take some values for $m, n, k, k_1, s, and a$ to find $(Tr_m^n D_{n,k}(x, a)^{k_1} + \alpha)^s$, where $D_{n,k}(x, a)$ be Dickson polynomial, and α an odd in $\mathbb{F}_{2^{2m}}$:

Table 4.2

т	п	k	а	k_1	α	S	$(Tr_m^n D_{n,k}(x,a)^{k_1} + \alpha)^s$
3	6	1	1	1	1	1	$52x^2 + 54x^4 + 10x^6 + 58x^8 + 4x^{10} + 10x^{12} + 5$
5	10	2	2	2	3	2	$896x^{72} + 832x^{76} + 84x^{80} + 640x^{152} + 448x^{156} + 512x^{158} + 98x^{160} + 27$

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

7 14 3 4 4 5 3 $12288x^{440} + 4096x^{442} + 3584x^{444} + 6400x^{446} + 7350x^{448} + 8192x^{888} + 8192x^{890} + 7168x^{892} + 4608x^{894} + 3966x^{896} + 12288x^{1336} + 4036x^{1338} + 13824x^{1340} + 9472x^{1342} + 11250x^{1344} + 375$

References

- Akbary, D. Ghioca, and Q. Wang, "On constructing permutations of finite fields," *Finite Fields their Appl.*, vol. 17, no. 1, pp. 51–67, 2011, doi: 10.1016/j.ffa.2010.10.002.
- [2] L. Li, S. Wang, C. Li, and X. Zeng, "Finite Fields and Their Applications," *Finite Fields Their Appl.*, vol. 51, pp. 31–61, 2018, doi: 10.1016/j.ffa.2018.01.003.
- [3] Mullen, Gary L., and Daniel Panario. *Handbook of finite fields*. Vol. 17. Boca Raton: CRC Press, 2013.
- [4] N. Fernando, X. D. Hou, and S. D. Lappano, "A new approach to permutation polynomials over finite fields, II," *Finite Fields their Appl.*, vol. 22, pp. 122–158, 2013, doi: 10.1016/j.ffa.2013.01.001.
- [5] Q. Wang and J. L. Yucas, "Dickson polynomials over finite fields," *Finite Fields their Appl.*, vol. 18, no. 4, pp. 814–831, 2012, doi: 10.1016/j.ffa.2012.02.001.
- [6] Rota, Gian-Carlo, ed. *Encyclopedia of Mathematics and its Applications*. Addison-Wesley, 1976.
- [7] X. D. Hou, "Permutation polynomials over finite fields A survey of recent advances," *Finite Fields their Appl.*, vol. 32, pp. 82–119, 2015, doi: 10.1016/j.ffa.2014.10.001.
- [8] X. Zeng, X. Zhu, N. Li, and X. Liu, "Finite Fields and Their Applications Permutation polynomials over F 2 n of the form," *Finite Fields Their Appl.*, vol. 47, pp. 256–268, 2017, doi: 10.1016/j.ffa.2017.06.012.

ISSN (print): 2706- 6908, ISSN (online): 2706-6894

Vol.17 No.1 Mar 2022

- [9] Y. Zheng, F. Wang, L. Wang, and W. Wei, "Finite Fields and Their Applications On inverses of some permutation polynomials over finite fields of characteristic three ☆," *Finite Fields Their Appl.*, vol. 66, p. 101670, 2020, doi: 10.1016/j.ffa.2020.101670.
- [10] Z. Li, M. Wang, J. Wu, and X. Zhu, "Finite Fields and Their Applications Some new forms of permutation polynomials based on the AGW criterion," *Finite Fields Their Appl.*, vol. 61, p. 101584, 2020, doi: 10.1016/j.ffa.2019.101584.