Vol. 17 No. 1 Mar 2022

Some of permutation polynomials of the form

$$
\begin{gathered}
D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{1}\right)^{s_{1}}+\left(\operatorname { T r } _ { m } ^ { n } \left(D_{n, k}(x, a)^{k}+\right.\right.\right. \\
\left.\alpha_{2}\right)^{s_{2}} \text { over } \mathbb{F}_{2}^{2 m}
\end{gathered}
$$

Hasan H. Mushatet

Ministry of Education, Thi-Qar Education Directorate, Iraq. hasanalhelaly @utq.edu.iq

https://doi.org/10.32792/utq/utj/vol17/1/2

ABSTRACT

By this paper, we intend structure of some class of permutation polynomials which having the form $D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{1}\right)^{s_{1}}+\right.$ $\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{2}\right)^{s_{2}}\right.$ over $\mathbb{F}_{2}^{2 m}$ depend on (AGW criterion).

Keywords: Permutation polynomial, Dickson polynomial, Reversed Dickson polynomial, Trace function.

1. Introduction

Let q be a prime power, and $q=p^{n}, p$ is a prime positive integer number, and let \mathbb{F}_{q} be a finite field, then a polynomial $f \in \mathbb{F}_{q}[x]$ is called a permutation polynomial (PP) over \mathbb{F}_{q} if It is bijective.

There are an important applications of permutation polynomial in a several areas as cryptography, coding theory, communication engineering, and combinatorial design theory. The first studies on permutation polynomial was by Hermite[3][7], after that , Dickson worked on this field[4][6]

Akbary, Ghioca and Wang structured a criterion (which known as the AGW criterion) to investigate by permutation polynomials. [1][7]

The target of this paper is to constructing some classes of permutation polynomials of the form

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

a
جامعة
ذي قار
$D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{1}\right)^{s_{1}}+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{2}\right)^{s_{2}}\right.\right.$
Over $\mathbb{F}_{2^{2 m}}$, when m, n, s_{1}, s_{2}, and k are positive integers, α_{1} and α_{2} are odd positive numbers in $\mathbb{F}_{2^{2 m}}$ with $n=2 m$, and a fixed $a \in \mathbb{F}_{2^{2 m}}$. In this paper we will depend on AGW(criterion) with some propositions and lemmas to our proofs.

2. Preliminaries

The trace function from $\mathbb{F}_{p^{n}}$ into $\mathbb{F}_{p^{m}}$ denoted by :
$\operatorname{Tr}_{m}^{n}(x)=x+x^{p^{m}}+x^{p^{2 m}}+\cdots+x^{p^{\left(\frac{n}{m-1}\right) m}}$, where m, n are two positive integers and $m \mid n$, and p is a prime number.

Let π be a subset of $\mathbb{F}_{p^{n}}$ and define by:
$\pi=\left\{\gamma^{p^{m}}-\gamma: \gamma \in \mathbb{F}_{p^{n}}\right\}$
Then for each element $\alpha \in \pi$, satisfy:
$T r_{m}^{n}(\alpha)=0$
For a prime power, a function $\emptyset(x)=\sum_{i=0}^{s} a_{i} x^{q^{i}}$, when $a_{0}, a_{1}, \ldots, a_{s}$ in \mathbb{F}_{q} then we called $\emptyset(x)$ a \mathbb{F}_{q} - linear polynomial over $\mathbb{F}_{p^{m} .[1][8]}$

Lemma (2.1) [2]
Let m, n are positive integers , $m \mid n$, and let $\emptyset(x)$ be a \mathbb{F}_{q} - linear polynomial over $\mathbb{F}_{p^{m}}, h(x) \in \mathbb{F}_{p^{n}}[x]$ be a polynomial such that $h\left(x^{p^{m}}-\right.$ $x) \in \mathbb{F}_{p^{m}} \backslash\{0\}$, and $g(x) \in \mathbb{F}_{p^{n}}[x]$ be any polynomial, for all $x \in \mathbb{F}_{p^{n}}$.

Then $h\left(x^{p^{m}}-x\right) \emptyset(x)+g\left(x^{p^{m}}-x\right)$ is a permutation of $\mathbb{F}_{p^{n}}$ if and only if:
(i) $\quad \emptyset(x)$ induces a permutation polynomial of $\mathbb{F}_{p^{m}}$;
(ii) $\quad h(x) \emptyset(x)+g(x)^{p^{m}}-g(x)$ permutes π which defined in (1).

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

Lemma(2.2) [2]

Let , n, and t are positive integers with $m \mid n, s_{i}$ be nonnegative integer, $1 \leq i \leq t$

And a fixed $\delta \in \mathbb{F}_{p^{n}}$ then $f(x)=\sum_{i=1}^{t}\left(x^{p^{m}}-x+\delta\right)^{s_{i}}+x$ is a permutation polynomial over $\mathbb{F}_{p^{n}}$ if and only if :
$\sum_{i=1}^{t}\left((x+\delta)^{p^{m} s_{i}}-(x+\delta)^{s_{i}}\right)+x$ permutes.
Lemma(2.3)[10]
Let $, n, s$, and k are positive integers with $n=2 m$, And a fixed $\delta \in \mathbb{F}_{p^{n}}$ then the polynomial $f(x)=x+\left(T r_{m}^{n}(x)^{k}+\delta\right)^{s p^{m}}$ induces a permutation over $\mathbb{F}_{p^{2 m}}$
if and only if $g(x)=\left(x^{k}+\alpha\right)^{s p^{m}}\left(x^{k}+\alpha\right)^{s}+x$ be a bijection on the set:

$$
S=\left\{x \in \mathbb{F}_{p^{2 m}}: x^{p^{m}}-x=0\right\}
$$

Proposition(2.1)[10]
Let $\alpha \in \mathbb{F}_{2^{2 m}}$, and m is an odd then the polynomial $f(x)=x+\left(\operatorname{Tr}_{m}^{n}(x)^{\frac{2^{m}+1}{3}}+\alpha\right)^{2^{m-1}+1}$ permutes $\mathbb{F}_{p^{2 m}}$.

Proposition(2.2)[6]

Assume that $\alpha \in \mathbb{F}_{2^{2 m}}$, and let m is an odd then the polynomial

$$
f(x)=x+\left(\operatorname{Tr}_{m}^{n}(x)^{2^{\frac{m+1}{3}-1}}+\alpha\right)^{2^{\frac{m+1}{3}+1}} \text { permutes } \mathbb{F}_{p^{2 m}}
$$

Proposition(2.3)[10]
When $\alpha_{1}, \alpha_{2} \in \mathbb{F}_{2^{2 m}}$, and $s_{1}, s_{2}, k_{1}, k_{2}$ are positive integers then:
$f(x)=x+\left(\operatorname{Tr}_{m}^{n}(x)^{k_{1}}+\alpha_{1}\right)^{s_{1}}+\left(\operatorname{Tr}_{m}^{n}(x)^{k_{2}}+\alpha_{2}\right)^{s_{2}}$ is a permutation polynomial over $\mathbb{F}_{2^{2 m}}$ if and only if :

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

$$
h(x)=x+\left(\operatorname{Tr}_{m}^{n}(x)^{k_{1}}+\alpha_{1}\right)^{s_{1}} \text { permutes } \mathbb{F}_{2^{2 m}}
$$

Definition (2.1) [5]

Let $a \in \mathbb{F}_{q}$, for any positive integers n, k we can define an $n-t h$ Dickson Polynomial of the $(k+1)-t h$ kind over \mathbb{F}_{q} as:

$$
D_{n, k}(x, a)=\sum_{j=0}^{\left[\frac{n}{2}\right]} \frac{n-j k}{n-j}\binom{n-j}{j}(-a)^{j} x^{n-2 j}
$$

Definition (2.2) [5][9]
Let $a \in \mathbb{F}_{q}$, and $n, k \in \mathbb{Z}^{+}$then the $n-t h$ Reversed Dickson Polynomial from the $(k+1)-t h$ kind over \mathbb{F}_{q} can be define as:

$$
D_{n, k}(x, a)=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n-j k}{n-j}\binom{n-j}{j}(-1)^{j} a^{n-2 j} x^{j}
$$

Lemma (2.4) [6]

$$
D_{n, k}(x, a)=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n-j k}{n-j}\binom{n-j}{j}(-a)^{j} x^{n-2 j}
$$

when $a \in \mathbb{F}_{2^{n}}$ is a permutation polynomial over $\mathbb{F}_{2^{n}}$ if and only if $\operatorname{gcd}\left(n, 2^{2 n}-1\right)=1$.

Example(2.1) : Let $n=$ even number then that yield $\operatorname{gcd}\left(n, 2^{2 n}-1\right)=1$.
For example $n=4$ then $\operatorname{gcd}\left(4,2^{2 \times 4}-1\right)=\operatorname{gcd}(4,255)=1$
That implies $D_{4, k}(x, a)$ is permutation polynomial over $\mathbb{F}_{2^{n}}$ when $a, x \in$ $\mathbb{F}_{2^{n}}$, and $k \in \mathbb{Z}^{+}$.

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

Lemma(2.5)[6]

Let m be an odd positive integer number then

$$
\operatorname{gcd}\left(2^{\frac{m+1}{2}}+1,2^{m}-1\right)=1
$$

3. PPs of the form $\quad D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha\right)^{s}\right.$

Proposition (3.1)

Let , n, s, and $k \in \mathbb{Z}^{+}$, and a fixed $a \in \mathbb{F}_{p^{n}}$ where $n=2 m$, and m is odd then the polynomial:

$$
D_{n, k}(x, a)=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n-j k}{n-j}\binom{n-j}{j}(-a)^{j} x^{n-2 j}
$$

Is a permutation polynomial if and only if $\operatorname{gcd}\left(2^{\frac{m+1}{2}}, 2^{m}-1\right)=1$.
Proof: Suppose that $D_{n, k}(x, a)$ be a permutation polynomial then:
$\operatorname{gcd}\left(n, 2^{2 n}-1\right)=1 \quad($ Lemma 2.4 $)$
That implies to $\operatorname{gcd}\left(2^{\frac{m+1}{2}}, 2^{m}-1\right)=1$
Now assume that $\operatorname{gcd}\left(2^{\frac{m+1}{2}}, 2^{m}-1\right)=1$ then by (Lemma 2.4) we obtain $D_{n}(x, a)$ is a permutation polynomial.

Then $D_{n, k}(x, a)$ is a permutation polynomial
Example(3.1) : Let $n=2 m$, and m is odd positive integer number then that yield $\operatorname{gcd}\left(2^{\frac{m+1}{2}}+1,2^{m}-1\right)=1$.

For example $m=3$ then $\operatorname{gcd}\left(2^{\frac{3+1}{2}}+1,2^{3}-1\right)=\operatorname{gcd}(5,7)=1$.
That is equivalence to $\operatorname{gcd}\left(n, 2^{2 n}-1\right)$ when $n=4$, which implies

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

$\operatorname{gcd}\left(4,2^{2 \times 4}-1\right)=\operatorname{gcd}(4,255)=1$
Thus $D_{6, k}(x, a)$ is permutation polynomial over $\mathbb{F}_{2^{2 m}}$ when $a, x \in$ $\mathbb{F}_{2^{2 m}}$, and $k \in \mathbb{Z}^{+} . m=5$ then $\operatorname{gcd}\left(2^{\frac{5+1}{2}}+1,2^{5}-1\right)=\operatorname{gcd}(8,31)=1$.

Example(3.2) : In the following Table 3.2 we take some values for m, n, k and a, when a is odd to find the form of Dickson Polynomial $D_{n, k}(x, a)$:

Table 3.2

m	$n=2 m$	k	a	$\mathbb{F}_{2^{2 m}}$	$D_{n, k}(x, a)$
3	6	1	1	$\mathbb{F}_{2^{6}}$	$x^{6}+59 x^{4}+6 x^{2}+63$
5	10	2	3	$\mathbb{F}_{2^{10}}$	$x^{10}+1000 x^{8}+189 x^{6}+484 x^{4}$
7	14	3	5	$\mathbb{F}_{2^{14}}$	$x^{14}+16329 x^{2}$ $7009 x^{8}+9866 x^{6}+$
					$1100 x^{10}+$
	18	4	7	$\mathbb{F}_{2^{18}}$	$x^{18}+262046 x^{4}+10626 x^{2}+12589$ $199718 x^{12}+81299 x^{10}+$
					$182058 x^{8}+172114 x^{6}+$ $123252 x^{4}+149121 x^{2}+229006$

Example(3.3) : In the following Table 2.2 we take some values for m, n, k and a, when a is even to find the form of Dickson Polynomial $D_{n, k}(x, a)$:

Table 3.3

m	n $=2 m$	k	a	$\mathbb{F}_{2^{2 m}}$	$D_{n, k}(x, a)$
3	6	1	2	$\mathbb{F}_{2^{6}}$	$x^{6}+54 x^{4}+24 x^{2}+56$

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894
Vol. 17 No. 1 Mar 2022

5	10	2	4	$\mathbb{F}_{2^{10}}$	$x^{2}\left(x^{8}+992 x^{6}+336 x^{4}+768 x^{2}\right.$
$+256)$					

7 \& 14 \& 3 \& 6\end{array} \mathbb{F}_{2^{14}} $$
\begin{aligned} & x^{14}+16318 x^{12}+1584 x^{10}+ \\
& \\
& \end{aligned}
$$\)

Proposition (3.2)

Let , n, s, and $k \in \mathbb{Z}^{+}$, and a fixed $a \in \mathbb{F}_{p^{n}}$, a is even where $n=2 m$, and m is odd then the polynomial:

$$
D_{n, k}(x, a)=\sum_{j=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n-j k}{n-j}\binom{n-j}{j}(-1)^{j} a^{n-2 j} x^{j}
$$

Is a permutation polynomial if and only if $\operatorname{gcd}\left(2^{\frac{m+1}{2}}, 2^{m}-1\right)=1$.
Proof: Suppose that $D_{n, k}(x, a)$ be a permutation polynomial then:
$\operatorname{gcd}\left(n, 2^{2 n}-1\right)=1 \quad($ Lemma2.4)
That implies to $\operatorname{gcd}\left(2^{\frac{m+1}{2}}, 2^{m}-1\right)=1$
Now since $\operatorname{gcd}\left(2^{\frac{m+1}{2}}, 2^{m}-1\right)=1$ then by (Lemma 2.4) we obtain $D_{n}(x, a)$ is a permutation polynomial

Then $D_{n, k}(x, a)$ is a permutation polynomial
Example(3.4) : In the following Table 3.4 we take some values for m, n, k and a, when a is odd to find the form of reversed Dickson Polynomial $D_{n, k}(x, a)$:

University of Thi－Qar Journal

ISSN（print）：2706－6908，ISSN（online）：2706－6894
Vol． 17 No． 1 Mar 2022

ロ゙】
シマロ！

Table 3.4

m	$n=2 m$	k	a	$\mathbb{F}_{2^{2 m}}$	$D_{n, k}(x, a)$
3	6	1	2	$\mathbb{F}_{2^{6}}$	$63 x^{3}+24 x^{2}+48 x$
5	10	2	4	$\mathbb{F}_{2^{10}}$	$80 x^{4}$
7	14	3	6	$\mathbb{F}_{2^{14}}$	$x^{7}+15880 x^{6}+1760 x^{5}+$ $9856 x^{4}+5376 x^{3}+12288 x^{2}+$ $4096 x$
	18	4	8	$\mathbb{F}_{2^{18}}$	$2 x^{7}\left(129056 x+90112 x^{2}\right)$

4．PPs of the form $D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k_{1}}+\alpha_{1}\right)^{s_{1}}+\right.$ $\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k_{2}}+\alpha_{2}\right)^{s_{2}}\right.$

Proposition（4．1）

For a positive integers m, n, s ，and k with $n=2 m$ and a fixed $a \in \mathbb{F}_{p^{n}}$ ， and an odd $\alpha \in \mathbb{F}_{p^{n}}$ then ：
$f(x)=D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha\right)^{s}\right.$
induces a permutation polynomial on $\mathbb{F}_{2^{2 m}}$ if and only if
$g(x)=\left[\left(D_{n, k}(x, a)\right)^{k}+\alpha\right]^{s . p^{m}}+\left[\left(D_{n, k}(x, a)\right)^{k}+\alpha\right]^{s}+\left(D_{n, k}(x, a)\right.$ is one－to－one and onto over the set $\pi=\left\{l \in \mathbb{F}_{p^{2 m}}: l^{p^{m}}-l=0\right\}$ ．

Proof：since $\pi=\left\{l \in \mathbb{F}_{p^{2 m}}: l^{p^{m}}-l=0\right\}$ then we can write ：
$\pi=\left\{l^{p^{m}}+l: l \in \mathbb{F}_{p^{2 m}}\right\}$.

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

Suppose that $\Psi(x)=\bar{\Psi}(x)=l^{p^{m}}+l=\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)\right)$ then we can note it verified the following diagram:
 commutes.

For any $\delta \in \pi$ we have $\Psi^{-1}(\delta)=\left\{x \in \mathbb{F}_{p^{2 m}}: x^{p^{m}}+x=\delta\right\}$, so that $f(x)=D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha\right)^{s}\right.$ is one-to-one over $\Psi^{-1}(\delta)$.

By (AGW criterion) f is a permutation on $\mathbb{F}_{p^{2 m}}$ if and only if $g(x)$ is
a permutation over π.

Lemma (4.1)

Let $m, n, s_{1}, s_{2}, k_{1}$, and k_{2}, are positive integers, α_{1} and α_{2} are odd positive numbers in $\mathbb{F}_{2^{2 m}}$ with $n=2 m$, and a fixed $a \in \mathbb{F}_{2^{2 m}}$ then:
$f(x)=D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k_{1}}+\alpha_{1}\right)^{s_{1}}+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k_{2}}+\right.\right.\right.$ $\left.\alpha_{2}\right)^{S_{2}}$ is permutes $\mathbb{F}_{2^{2 m}}$
if and only if it induces a bijection :
$g(x)=D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{1}\right)^{s_{1}}\right.$ over $\mathbb{F}_{2^{2 m}}$.
Proof : Let $f(x)$ permutes $\mathbb{F}_{2^{2 m}}$ then (By proposition 2.3) we obtain :
$g(x)=D_{n, k}(x, a)+\left(\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)^{k}+\alpha_{1}\right)^{s_{1}}\right.$ permutes $\mathbb{F}_{2} 2 m$.
Now let $g(x)$ permutes $\mathbb{F}_{2^{2 m}}$ then (By Lemma 3.2) g is a bijection on the set $\pi=\left\{l \in \mathbb{F}_{2^{2 m}}: l^{p^{m}}-l=0\right\}$

Then by (AGW Criterion) we obtain f is permutes $\mathbb{F}_{2^{2 m}}$.

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol. 17 No. 1 Mar 2022

ة
جامعة
ذي قار

Example(4.1) : In the following Table 4.1 we take some values for m, n, k, k_{1}, and a to find $\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)\right)^{k_{1}}$, where $D_{n, k}(x, a)$ be Dickson polynomial :

Table 4.1

m	n	k	a	k_{1}	$\operatorname{Tr}_{m}^{n}\left(D_{n, k}(x, a)\right)^{k_{1}}$
3	6	1	1	1	$\left.52 x^{2}+18 x^{4}+6 x^{6}+35 x^{8}+34 x^{10}+4 x^{12}\right)$
5	10	2	2	2	$x^{24}\left(256 x^{4}+352 x^{8}+256 x^{10}+336 x^{12}+896 x^{14}\right.$
7	14	3	4	4	$\left.4096 x^{16}+256\right)$

Example(4.2) : In the following Table 4.2 we take some values for m, n, k, k_{1}, s, and a to find $\left(\operatorname{Tr}_{m}^{n} D_{n, k}(x, a)^{k_{1}}+\alpha\right)^{s}$, where $D_{n, k}(x, a)$ be Dickson polynomial, and α an odd in $\mathbb{F}_{2^{2 m}}$:

Table 4.2

m	n	k	a	k_{1}	α	s	$\left(\operatorname{Tr}_{m}^{n} D_{n, k}(x, a)^{k_{1}}+\alpha\right)^{s}$
3	6	1	1	1	1	1	$52 x^{2}+54 x^{4}+10 x^{6}+58 x^{8}+4 x^{10}+10 x^{12}$
							+5

$510 \quad 2 \quad 2 \quad 2 \quad 3 \quad 2 \quad 896 x^{72}+832 x^{76}+84 x^{80}+640 x^{152}+$ $448 x^{156}+512 x^{158}+98 x^{160}+27$

ISSN (print): 2706-6908, ISSN (online): 2706-6894
Vol. 17 No. 1 Mar 2022

$$
\begin{array}{lllllll}
7 & 14 & 3 & 4 & 4 & 5 & 12288 x^{440}+4096 x^{442}+3584 x^{444}+ \\
& & & \\
& & & 8190 x^{446}+7350 x^{448}+8192 x^{888}+7168 x^{892}+4608 x^{894}+ \\
& & 3966 x^{896}+12288 x^{1336}+4036 x^{1338}+ \\
& 13824 x^{1340}+9472 x^{1342}+11250 x^{1344}+ \\
& & & 375
\end{array}
$$

References

[1] Akbary, D. Ghioca, and Q. Wang, "On constructing permutations of finite fields," Finite Fields their Appl., vol. 17, no. 1, pp. 51-67, 2011, doi: 10.1016/j.ffa.2010.10.002.
[2] L. Li, S. Wang, C. Li, and X. Zeng, "Finite Fields and Their Applications," Finite Fields Their Appl., vol. 51, pp. 31-61, 2018, doi: 10.1016/j.ffa.2018.01.003.
[3] Mullen, Gary L., and Daniel Panario. Handbook of finite fields. Vol. 17. Boca Raton: CRC Press, 2013.
[4] N. Fernando, X. D. Hou, and S. D. Lappano, "A new approach to permutation polynomials over finite fields, II," Finite Fields their Appl., vol. 22, pp. 122-158, 2013, doi: 10.1016/j.ffa.2013.01.001.
[5] Q. Wang and J. L. Yucas, "Dickson polynomials over finite fields," Finite Fields their Appl., vol. 18, no. 4, pp. 814-831, 2012, doi: 10.1016/j.ffa.2012.02.001.
[6] Rota, Gian-Carlo, ed. Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1976.
[7] X. D. Hou, "Permutation polynomials over finite fields - A survey of recent advances," Finite Fields their Appl., vol. 32, pp. 82-119, 2015, doi: 10.1016/j.ffa.2014.10.001.
[8] X. Zeng, X. Zhu, N. Li, and X. Liu, "Finite Fields and Their Applications Permutation polynomials over F 2 n of the form," Finite Fields Their Appl., vol. 47, pp. 256-268, 2017, doi: 10.1016/j.ffa.2017.06.012.

University of Thi-Qar Journal

ISSN (print): 2706-6908, ISSN (online): 2706-6894
Vol. 17 No. 1 Mar 2022

[9] Y. Zheng, F. Wang, L. Wang, and W. Wei, "Finite Fields and Their Applications On inverses of some permutation polynomials over finite fields of characteristic three \approx," Finite Fields Their Appl., vol. 66, p. 101670, 2020, doi: 10.1016/j.ffa.2020.101670.
[10] Z. Li, M. Wang, J. Wu, and X. Zhu, "Finite Fields and Their Applications Some new forms of permutation polynomials based on the AGW criterion," Finite Fields Their Appl., vol. 61, p. 101584, 2020, doi: 10.1016/j.ffa.2019.101584.

