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Abstract 

Federated Learning (FL) is a model training scheme with guaranteed preserved data privacy, 

but model poison and manipulation attack susceptibility, and model performance degradation 

through adversary attack. In this work, a Blockchain-Based Verification with Fusion 

Mechanism (BVFM) is designed to enhance FL’s security and robustness. With a tamper-

evidence model update guaranteed through a blockchain layer, and a trust-dependent 

weighted fusion mechanism, trust values are granted to participating nodes, dynamically 

weighing them in contributing to a global model. Experimental evaluation in terms of 

performance under Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), 

and Carlini & Wagner (C&W) attack scenarios in medical imaging tasks confirms efficacy of 

BVFM and, in comparison with baseline FL techniques, its accuracy improvement to 94.3%, 

outperforming local training nodes (88.7%–90.1%). Under adversarial conditions, BVFM 

reduces the Adversarial Success Rate (ASR) from 59.3% to 25.0% (C&W attack) and from 

49.8% to 20.1% (PGD attack), significantly enhancing model robustness. Furthermore, t-SNE 

visualizations illustrate BVFM’s ability to maintain the separability of benign and malignant 

classifications despite adversarial perturbations. Compared to existing FL approaches, BVFM 

achieves the highest accuracy (94.4%), precision (92.5%), recall (93.1%), and F1-score 

(92.8%), while requiring only 85 seconds of training time—29% faster than leading methods. 

These results highlight BVFM as a scalable and secure FL solution for adversarial resilience 

in medical imaging, autonomous systems, and cybersecurity applications. 
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1. Introduction 

In recent years, widespread use of distributed training frameworks has opened new avenues 

for model training in harmony with keeping data confidential. Federated Learning (FL) is one 

such striking framework that enables decentralized training through providing many nodes 

with an opportunity to learn a common model together in a manner such that no raw 

information is exchanged between them. FL, with its potential, suffers badly in practice with 

non-independent and identically distributed (non-IID) data, high communication expense, 

and vulnerability to attack. In most critical cases, such as in medical, financial, and smart 

grid, with sensitive information distributed over many entities, secure and reliable federated 

training processes have become a necessity  [1.]  

Adversarial attacks form a key challenge for FL frameworks. Malicious nodes sending 

incorrect or poisoned updates with a purpose to corrupt the training and degrade the 

performance of the global model form such an attack. Model poisoning, data poisoning, and 

inference attack form three most prevalent attack types in FL. In such an attack, the global 

model can be tampered with, and sensitive information can become compromised, and 

traditional aggregation algorithms, such as Federated Averaging (FedAvg), become deficient. 

Hence, creating robust FL algorithms with high performance and capable of countering 

adversarial factors is significant  [2.]  

A survey of state-of-the-art works reveals a range of new techniques for enhancing FL's 

security in terms of adversary attack for strengthening its security. For example, a few utilize 

blockchain for secure dissemination of updates, and a few utilize complex fusion approaches 

or graph neural networks for accuracy and scalability improvement in detection. However, 

such techniques have limitations in terms of high computational cost, ineffectiveness in 

handling non-IID distributions, and susceptibility to complex adversary attacks. In spite of 

such enhancements, such works have no overall frameworks for handling the intertwined 

issue of adversary robustness, data heterogeneity, and secure communications  [3.]  

The proposed algorithm extends such enhancements with a trust value weighted fusion 

mechanism and a model update verification use of a blockchain for secure communications 

between nodes. Model update integrity and authenticity checking use a blockchain for secure 

communications between nodes. Trust value weighted fusion mechanism fuses received 

updates from nodes in terms of trust values, effectively filtering out any malicious 

contribution and lessening its impact. Dynamical updating of trust values and performance 

checking, the proposed algorithm not only keeps the overall model secure but optimized for 

heterogeneous and multi-modal distributions  [4.]  
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Fusion mechanisms in federated learning, specifically with regard to adversary robustness, 

have a significant role to contribute. Traditional aggregation methods assign a uniform 

weight to all nodes and, therefore, can amplify adversary impact. In contrast, weighted fusion 

approaches utilize trust values or performance values to prioritize updates received from 

trustful nodes. Through selective aggregation, such approaches counteract adversary impact 

and enable robust and reliable aggregation in a worldwide model. In our work, fusion 

mechanism is closely intertwined with a blockchain, offering a secure and flexible platform 

for a decentralized environment  [5.]  

The proposed scheme outpaces traditional techniques with a synergistic combination of trust-

dependent fusion, adaptability, and aggregation algorithms and blockchain technology. 

Unlike in traditional works with static fusion rules and centralized verification, our scheme 

dynamically adjusts trust values in terms of performance and consistency of individual nodes. 

Besides, with a use of a blockchain technology, a tamper-evidence update record is 

generated, and security in the system is boosted even further. With such breakthroughs, the 

scheme addresses critical FL system weaknesses such as adversary attack, heterogeneity in 

information, and secure information transmission. 

The motivation for such work comes with a growing demand for secure FL systems that can 

function in a secure and efficient manner in adversary and poor-resource environments. 

Existing works lack in balancing security, efficiency, and scalability, and real 

implementations suffer with many gaps. With trust-based fusion and blockchain, such gaps in 

proposed work are filled, and an efficient and scalable scheme for secure FL is proposed. In 

this work, a scheme for FL is proposed with a target to develop a secure FL scheme that can 

resist adversary impact and have high performance and secure collaboration between nodes. 

In summary, the proposed scheme addresses a range of FL concerns, including adversary 

attack, heterogeneity in data, and secure communications. With update checking via use of a 

blockchain and trust aggregation for adaptability, integrity, security, and efficiency in shared 

model are assured. With its new scheme, an overall resolution for weaknesses in current 

approaches is proposed, paving the way for secure and reliable federated learning in high-

value and heterogeneous settings. 

2. Related works 

The use of Federated Learning (FL) has been instrumental in addressing various challenges in 

collaborative and privacy-preserving machine learning. Below is a detailed discussion of the 

cited methods, their adversarial strategies, FL mechanisms, fusion techniques, and 

limitations. 
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FL leverages decentralized head fusion to address statistical heterogeneity and label scarcity 

in medical datasets [6]. Incorporating an attention-based latent space fusion mechanism 

ensures effective model updates across nodes. However, the computational overhead of 

attention mechanisms and the difficulty of handling multi-modality label scarcity remain 

significant challenges. 

Some works present a lightweight FL framework for intrusion detection in VANETs [7]. It 

employs Dempster–Shafer Theory for decision-level fusion, balancing real-time detection 

with communication efficiency in highly dynamic environments. Despite its merits, the 

method struggles with the trade-off between maintaining detection accuracy and minimizing 

latency in such rapidly changing settings. 

Adversarial prompts with crafted input noise are used to disrupt model performance [8]. 

While no explicit FL mechanism is applicable, the study highlights the limited generalization 

of models against adversarial noise and the lack of robust safeguards to handle subtle 

manipulations effectively. 

Recent studies introduce a blockchain-secured FL framework to counter gradient poisoning, 

data poisoning, and inference attacks [9]. Utilizing Wasserstein Generative Adversarial 

Networks (WGAN) to handle data heterogeneity, the method achieves robust model 

aggregation. However, the high computational cost of GANs and the complexity of 

blockchain setup present scalability challenges. 

Vertical FL is applied with graph neural networks (GNNs) for malicious domain detection 

[10]. By incorporating graph contrastive learning to mitigate noisy labels and an information 

bottleneck loss to reduce noisy edges, the framework excels in its domain. Nonetheless, the 

high computational cost of processing heterogeneous graph data and reliance on inter-

institution collaboration hinder widespread adoption. 

FL combines with a FedAvg variant and blockchain-based intrusion detection for the Internet 

of Vehicles (IoV) [11]. It introduces RSA encryption and blockchain-secured intrusion 

logging for robust privacy protection. However, the system's reliance on stable 

communication infrastructure and the overhead of blockchain communication limit its 

practical deployment in dynamic IoV environments. 

FL is integrated with Anova and Chi-Square for feature selection (FS) and Linear 

Discriminant Analysis (LDA) for feature extraction (FE) [12]. The fusion of FS and FE 

techniques enhances prediction performance, but dependency on curated datasets and 

scalability challenges with distributed healthcare data pose significant limitations. 

Enhanced Random Forest and One-Class SVM with FL for green intrusion detection is 

employed in Medical IoT (MIoT) [13]. The FL-based model updating mechanism ensures 
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distributed security. However, achieving an energy-efficient trade-off while maintaining 

detection performance and scaling to large MIoT networks remains a concern. 

FL is used with decision-tree-based intrusion detection and a weighted aggregation 

mechanism to secure vehicular environments [14]. While effective, the method experiences 

high computational costs and latency in high-traffic scenarios, limiting its real-time 

applicability. 

Moreover, adversarial manipulation of input prompts is explored [15]. Although no explicit 

FL or fusion mechanisms are used, the study highlights the challenges in defending against 

unstructured adversarial attacks, particularly in text-to-image tasks. 

 Table 1 summarizes the related methods in recent years; blockchain-enhanced is combined 

with FL for secure intrusion data logging [11]. The use of blockchain ensures privacy but 

adds significant communication overhead, complicating its deployment in resource-

constrained settings. 

 

Table 1: the summarized state-of-the-art methods 

References 
Adversarial Attack 

Method 

Federated Learning 

Method 
Fusion Mechanism Issues in the Method 
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[6] 

Statistical 

heterogeneity and 

label scarcity 

handling 

FL with 

decentralized head 

fusion 

Attention-based 

latent space fusion 

Computational 

overhead of attention 

mechanisms; challenges 

in addressing multi-

modality label scarcity 

[7] 
None explicitly 

mentioned 

FL with lightweight 

neural networks 

Dempster–Shafer 

Theory for decision-

level fusion 

Balancing real-time 

detection with 

communication 

efficiency in highly 

dynamic VANET 

environments 

[16] 

Adversarial prompts 

with crafted input 

noise 

None explicitly 

applicable 
None 

Limited generalization 

against adversarial 

noise; lack of robust 

safeguards against 

subtle adversarial inputs 

[17] 

Gradient and data 

poisoning, inference 

attacks 

Blockchain-secured 

Federated Learning 

WGAN for handling 

data heterogeneity 

High computational 

cost of GANs; requires 

effective blockchain 

setup for security and 

communication 

[18] 

Graph contrastive 

learning for noisy 

labels 

Vertical Federated 

Learning with GNNs 

Information 

Bottleneck loss to 

reduce noisy edges 

High computational 

cost of processing 

heterogeneous graph 

data; reliance on inter-

institute collaboration 

for training 

[12] 
None explicitly 

mentioned 

FL with Anova and 

Chi-Square for FS; 

LDA for FE 

Combining feature 

selection and 

extraction with FL 

Dependency on curated 

datasets for training; 

scalability challenges 

with distributed 

healthcare data 

[13] 
None explicitly 

mentioned 

FL with Enhanced 

Random Forest; 

One-Class SVM 

FL model updating 

for distributed MIoT 

gateways 

Energy efficiency trade-

off with detection 

performance; scaling 

FL to large MIoT 

networks 

[14] 
None explicitly 

mentioned 

FL with decision-

tree-based intrusion 

detection 

Weighted 

aggregation 

mechanism 

High computational 

cost and latency in 

high-traffic vehicular 

network environments 

[19] 

Adversarial 

manipulation of input 

prompts 

None explicitly 

applicable 
None 

Challenges in defense 

against unstructured 

adversarial attacks 

[11] 
None explicitly 

mentioned 

Blockchain-

enhanced Federated 

Learning 

Blockchain for 

intrusion data 

logging and privacy 

Communication 

overhead in secure data 

sharing 
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Vertical federated GNN is used with graph neural network fusion to filter noise in graph-

based models [17]. Despite its success in collaborative data learning, scalability concerns for 

processing large graph datasets remain a barrier. 

FL introduces adaptive aggregation for resource-constrained IoT networks [13]. Adaptive 

model fusion enhances flexibility, but latency and resource constraints challenge its practical 

implementation. 

Also, FL employs blockchain-enhanced security [17], enabling secure model sharing through 

decentralized ledger systems. However, high resource utilization due to blockchain 

operations limits its efficiency in IoT environments. 

3. Proposed BVFM 
The Blockchain-Based Verification with Fusion Mechanism (BVFM) model seeks to enhance 

security, solidity, and accuracy in federated learning (FL) through a trust mechanism and integration 

with a blockchain technology (Figure 1). Model integrity, security, and aggregation efficiency are 

assured through a proposed model, and its efficacy in protecting against adversary attack is optimized 

through trust-weighted aggregation below entities of the BVFM model 

3.1. System Architecture of BVFM 

The Blockchain-Based Verification with Fusion Mechanism (BVFM) architectural model aims at 

providing strong, secure, and efficient federated learning through a multi-layered system combining 

blockchain verification and a trust-based fusion mechanism. There are three key layers in the 

architectural model: the Local Node Layer, the Blockchain Layer, and the Fusion Layer, with specific 

roles and operations for each of them. 

[13] 
None explicitly 

mentioned 

Enhanced Random 

Forest and One-

Class SVM with FL 

FL-based model 

updating for 

distributed MIoT 

networks 

Challenges in anomaly 

detection scalability for 

large-scale networks 

[20] 
None explicitly 

mentioned 

FL with semi-

supervised learning 

Decision-theoretic 

fusion 

Imbalanced datasets 

leading to model 

convergence issues 

[21] 
Noise filtering in 

graph-based models 

Vertical Federated 

GNN 

Graph neural 

network fusion 

Scalability concerns for 

graph learning in large 

collaborative datasets 

[22] 
None explicitly 

mentioned 

FL with adaptive 

aggregation 

Adaptive model 

fusion for resource-

constrained IoT 

networks 

Latency and resource 

constraints in IoT 

networks 

[23] 
None explicitly 

mentioned 

FL with blockchain-

enhanced security 

Secure model sharing 

through blockchain 

High resource 

utilization due to 

blockchain overhead 
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3.1.1. Local Node Layer 

This layer represents individual nodes participating in a federated scheme of learning. All such nodes 

locally update a model with private data and generate updates in model weight or gradient form. 

Cryptography keeps such updates safe: 

 Each node will hash its model updates for integrity checking. 

 The updates are signed with a private key of a node, providing authenticity and traceability 

 Once signed, such updates will then be uploaded onto the blockchain for verification and 

integration in the shared book. 

By performing computations locally, such a layer keeps information private and reduces 

communications overload with regard to aggregated information transfer. 

3.1.2. Blockchain Layer 

The blockchain layer acts as a distributed ledger that verifies and stores model updates 

securely. A lightweight blockchain is employed to minimize computational overhead while 

maintaining robust security: 

 Each block in the chain contains a hash of the model update, a timestamp, the node ID, and 

the digital signature of the node. 

 The blockchain employs a consensus mechanism, such as Proof of Stake (PoS), to validate 

new blocks and ensure that only legitimate updates are included. 

 This layer provides tamper-proof logging of all updates, enhancing trust and transparency 

among participating nodes. 

By maintaining a verifiable history of updates, the blockchain layer mitigates risks associated 

with adversarial nodes or malicious tampering. 

3.1.3. Fusion Layer 

The fusion layer accumulates confirmed blocks of the blockchain via a trust-based weighted 

mechanism. It involves: 

o Assigning each of them a trust value indicative of its dependability and 

contribution towards the overall model. 

o Dynamically updating trust values in relation to agreement between a node 

and overall model and performance over a shared validation set 

o Aggregating model updates with trust-weighted equation (Eq.(1)) 

 

        
∑   

 
      

∑   
 
   

       

 



 

University of Thi-Qar Journal 

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol.02 No.1 Mar  0202   
 
 

9 
 

 

Where         is a worldwide aggregated model,    is an update model for a node i,    is a trust 

value for a node I, and N is a total count of all nodes. This fusion mechanism aids in such a way that 

high trust value nodes have a larger contribution towards a worldwide model, and in turn, aids in 

reducing an adversary contribution. 

 

 

Figure 1 The Blockchain-Based Verification with Fusion Mechanism (BVFM) framework 

 

3.2. Blockchain-Based Verification 
Blockchain-based verification in the model for Federated Learning in a multi-federated model 

confirms integrity, trust, and authenticity of model updates between them shared collaboratively. It 

leverages immutability and decentralization in a blockchain for secure storing of model updates and 

authenticating them in terms of origin. 

3.2.1. Block Structure and Hashing Mechanism 

Each node in the system generates a block for every model update. The block structure 

includes the following components: 

1. Node ID (NID): Identifier for the node submitting the update. 

2. Timestamp (T): Time at which the update is submitted. 

3. Model Update Hash (H_update): Hash value of the model update (e.g., weights or 

gradients). 

4. Previous Block Hash (H_prev): Hash of the preceding block in the chain. 

5. Digital Signature (Sig): Signature of the update created using the node's private key for 

authenticity. 
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The hash for the current block        (Eq.(2)) 

                                        

Where        is Current block hash,        is Hash of the previous block,     is Node identifier, 

        is Hash of the model update,   is Timestamp, and   is Concatenation operator.  

 

3.2.2. Digital Signature for Authentication 

To ensure the authenticity of the submitted updates, nodes sign their model updates using a 

private key      . The signature Sig is generated as in Eq.(3) 

              
                 

If the verification fails, the update is rejected, ensuring that only valid and authenticated updates are 

recorded. 

3.2.3. Consensus Mechanism 

The system employs a lightweight consensus mechanism, such as Proof of Stake (PoS), to 

add blocks to the chain. In PoS, a node is selected to append the block based on its trust score 

   and historical contribution (Eq.(4)) 

   
  

∑   
 
   

       

Where    is the Probability of node i being selected,    trust score of node i, N is the total number of 

nodes. This mechanism ensures that nodes with a higher reputation are more likely to contribute 

blocks, enhancing the reliability of the blockchain. 

3.3. Adversarial attacks on medical imaging systems 

Adversarial attacks in medical imaging systems have significant implications for computerized 

medical tool trust and security. In an attack, an adversary manipulates an input image in a way that 

deceives a machine learning model, generating incorrect labels or predictions. For instance, a model 

can misdiagnose a breakage or a tumor through minor perturbations in an image, undetectable to a 

human observer, with a detrimental impact on patient care. In medical imaging, such examples of 

adversaries represent a concern, with a model trained over a range and possibly unbalanced datasets, 

sensitive to minor perturbations (Figure 2). Attacks exploit vulnerabilities in neural networks, such as 

overfamiliarity with idiosyncratic features and overreliance in non-robust structures, with room for 

altering prediction with minor perturbation in an image's perceptual features. 

The impact extends even deeper to medical AI system trustability. With critical medical decision-

making, trust in AI use can be compromised through attack in an adversary manner. Techniques such 
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as PGD and FGSM have been exploited in creating specific types of adversarial examples for medical 

imaging models such as X-ray and MRI analysis using CNNs. Techniques such as adversarial 

training, differential privacy, and robust feature extraction have been effective in defending such 

attack but at a price, such as increased computational cost and loss of model interpretability, and with 

an immediate imperative for tailor-made countermeasures for protecting medical imaging systems 

against such attack. 
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Figure 2:  Adversarial attacks on medical imaging defended by the proposed BVFM 

4. Experimental results 
  The experimental platform operated in a high-performance GPU and 64 GB RAM Windows Server, 

providing computational power for training and testing. There were a variety of local nodes, each 

training with locally distributed datasets of computed tomography (CT) scan, and a global server for 
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aggregation and testing of model. Local nodes trained with respective datasets in training rounds, 

generating model updates, and shared them with a secure global server via proposed Building 

Vehicular Federated Model (BVFM). Performance measures such as accuracy, precision, recall, and 

F1-score were measured both locally for individual performance and at a global server for testing 

aggregated model performance (Table 2). There was a robust environment for simulating federated 

learning processes with a secure update through use of a blockchain. 

Table 2: result obtained based on defended data in local and global nodes 

Metric Local Node 1 Local Node 2 Local Node 3 Global Server 

Accuracy (%) 88.7 89.4 90.1 94.3 

Precision (%) 87.9 88.6 89.8 93.5 

Recall (%) 86.5 87.2 88.9 92.8 

F1-Score (%) 87.2 88 89.3 93.2 

Training Time (s) 300 310 290 350 

 

 

4.1. Robustness of a model against adversarial attacks 

In the cases considered, three attack methods under adversary attack—Fast Gradient Sign 

Method (FGSM), Projected Gradient Descent (PGD), and Carlini & Wagner (C&W)—were 

considered at a range of perturbations to assess model performance under adversary attack. 

As a baseline, in a clean environment, model accuracy attained 94.40%, indicative of high 

performance in a healthy environment. In contrast, with adversary environment, accuracy 

took a significant drop in terms of attack and perturbative level. For FGSM, a perturbation 

level of ϵ=0.01\epsilon = 0.01ϵ=0.01 resulted in 72.30% accuracy, with an Adversarial 

Success Rate (ASR) of 27.70%. Increasing ϵ\epsilonϵ to 0.1 further degraded accuracy to 

55.80%, with a higher ASR of 44.20%, demonstrating FGSM's effectiveness in simple 

adversarial scenarios. Similarly, PGD, a more vigorous iterative attack, showed more 

significant degradation, with accuracy dropping to 68.10% at ϵ=0.01\epsilon = 0.01ϵ=0.01 

and 50.20% at ϵ=0.1\epsilon = 0.1ϵ=0.1, with ASR reaching 49.80% at higher perturbations. 

This highlights PGD's iterative advantage in crafting more substantial perturbations 

compared to FGSM. 

For C&W attacks, which use optimization-based perturbations, the results further illustrate 

the model's vulnerability. Under small L2-norm constraints, the model accuracy fell to 

65.40%, with an ASR of 34.60%. more significant perturbations increased ASR to 59.30%, 

reducing accuracy to just 40.70%. This underscores the effectiveness of C&W attacks in 

finding minimal yet impactful adversarial perturbations, especially in high-dimensional data 
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like CT scans. However, incorporating adversarial defenses reduced the ASR across all attack 

scenarios. For FGSM, PGD, and C&W, defensive mechanisms lowered ASR to ranges 

between 10.50% and 25.00%, improving adversarial accuracy while retaining clean data 

performance. These results highlight the importance of robust defenses, such as adversarial 

training, in mitigating the impact of both gradient-based and optimization-based attacks, 

ensuring enhanced reliability in sensitive applications like medical imaging. 

 

 

Table 3: Performance Metrics Under Adversarial Attacks (FGSM, PGD, C&W) with BVFM 

Attack 

Method 

Perturbation Level 

(ϵ\epsilonϵ) 

Accuracy 

(Clean Data) 

Accuracy 

(Adversarial 

Data) 

ASR 

(Without 

Defense) 

ASR (With 

Defense) 

FGSM 0.01 94.40% 72.30% 27.70% 10.50% 

FGSM 0.1 94.40% 55.80% 44.20% 18.60% 

PGD 0.01 94.40% 68.10% 31.90% 12.80% 

PGD 0.1 94.40% 50.20% 49.80% 20.10% 

C&W 
L2-norm constraint 

(small) 
94.40% 65.40% 34.60% 15.30% 

C&W 
L2-norm constraint 

(large) 
94.40% 40.70% 59.30% 25.00% 

 

 

4.2. t-SNE visualizations 

The t-SNE plots illustrate the differentiation between malignant and benign nodules in three 

cases: clean, adversarial, and defended data. In a clean case, one can observe a sharp 

differentiation between malignant and benign classes, with minimum intersection between 

them. That sharp differentiation mirrors the ability of the clean dataset in maintaining its 

native character, with correct classification being possible. Well-formed clusters in such a 

case validate that the model can extract effectively the native trends in the clean dataset, with 

high accuracy in classification. 

Conversely, in adversarial data visualization, malignant and benign clusters have a significant 

intersection, which reflects that feature space is severely distorted with adversarial 

perturbations. This intersection reflects that model performance in distinguishing between 

both classes is degraded with an attack through an adversary, and accuracy in classification is 

lowered. However, in the defended data visualization, the separation between the two clusters 

is partially restored, with minimal overlap, except for a few points. This result showcases the 



 

University of Thi-Qar Journal 

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol.02 No.1 Mar  0202   
 
 

15 
 

 

robustness of the defense mechanism in mitigating the impact of adversarial attacks while 

still maintaining an effective separation of classes. The defended scenario highlights how the 

proposed model's resilience to adversarial noise contributes to improved robustness and 

classification performance compared to the adversarial scenario. 

 

Figure 3:Visualization of Data Distribution Across Clean, Adversarial, and Defended Scenarios Using t-SNE 

 

4.3. Comparison with the state-of-the-art 

The analysis of the provided results highlights the distinct performance characteristics of each 

method in terms of accuracy, precision, recall, F1 score, and training time (Table 4). The 

proposed method outperforms other approaches with the highest accuracy (94.4%) and a 

remarkable balance across precision (92.5%), recall (93.1%), and F1-score (92.8%). 

Additionally, its training time is the shortest (85 seconds), showcasing the method's 

computational efficiency. This strong performance can be attributed to the integration of 

blockchain-based verification and trust-based weighted fusion mechanisms, which enhance 

both the robustness and efficiency of adversarial handling and federated learning aggregation. 

Federated Fusion for Medical Imaging [6] and FedFusion for Diagnostics  [13] also 

demonstrate competitive accuracy (93.8% and 94.0%, respectively), with slightly lower 

precision, recall, and F1-scores compared to the Proposed Method. However, these methods 

incur significantly higher training times (120 and 100 seconds, respectively) due to their 

reliance on attention-based latent space fusion. While these mechanisms are effective in 

handling multi-modality data and improving model performance, they introduce additional 

computational overhead, making them less suitable for time-sensitive applications. 

VAN-FED-IDS for VANETs [7], despite achieving the shortest training time (70 seconds), 

exhibits the lowest accuracy (90.1%) and the least favorable F1 score (89.2%). This trade-off 

stems from its design, which prioritizes real-time detection in highly dynamic vehicular 

environments. Although the method is optimized for low-latency scenarios, its reliance on 
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lightweight neural networks limits its ability to achieve high accuracy in complex adversarial 

situations, particularly in federated learning contexts. 

The Blockchain-Enabled FL (FedAnil) [24] and MDD-FedGNN [18] techniques have a balanced 

performance in terms of accuracy and robustness, with accuracy between 91.5% and 92.3%. 

Techniques effectively counteract data poisoning and noise with WGAN and contrastive graph 

learning, respectively. However, computational overloads in terms of processing and operations in a 

blockchain environment cause training times larger (95 to 110 seconds). Techniques function best in 

collaboration and sensitive environments but not in less availability and critical times environments. 

Lastly, methods including IoV-BCFL [11], GEMLIDS-MIOT [13], and Privacy-Preserving GNN [25] 

have a balanced performance with accuracy between 91.2% and 93%. High training times (90 to 115 

seconds) for them are reflective of them utilizing blockchain and privacy-preserving methodologies. 

As secure in defending information security and integrity, such approaches have poor performance in 

terms of scalability in large deployments and can suffer with computational resource constraints, 

particularly in IoT environments. 

In conclusion, analysis brings a spotlight to each approach's strengths and weaknesses. The Proposed 

Method is best balanced, with best accuracy and computational efficiency. There are strong 

alternatives for other approaches in specific use cases, such as multi-modal data fusion, real-time 

intrusion, and privacy-preserving federated learning, but at a cost in training time and accuracy, 

respectively. Comparison brings out the demand for a tailor-made solution for a specific application, 

balancing performance, security, and efficiency. 

 

Table 4: Comparison with the state of the art 

Method Accuracy (%) 
Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Training 

Time (s) 

Proposed BVFM 94.4 92.5 93.1 92.8 85 

[6] 93.8 91.2 91.8 91.5 120 

[7] 90.1 89.5 88.9 89.2 70 

[24] 92.3 89.9 90.5 90.2 110 

[18] 91.5 90.8 90.1 90.4 95 

[11] 92.1 90.2 91 90.6 105 

[13] 93 91.5 91.8 91.6 90 

[25] 91.2 89.8 90.3 90 110 

[26] 91.8 90 90.4 90.2 115 
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5. Conclusion  
The growing attack evasion and federation in complex federated learning in numerous real-life 

scenarios, such as medical imaging, vehicular networks, and IoT networks, generates a demand for 

effective and efficient methodologies. Analysis of methodologies in this work identifies a range of 

disparate methodologies for individual application scenarios, with regard for accuracy, computational 

efficiency, and security trade-offs. The proposed BVFM, with its trust and blockchain-verfied 

weighted fusion, is an efficient and effective one, with high accuracy and computational efficiency 

and high evasion robustness for adversarial attack. 

A key observation is that federated learning approaches can tailor to domain-related concerns. For 

example, Federated Fusion for Medical Imaging [6] and FedFusion for Diagnoses [27] have high 

performance in processing multi-modal information through attention operations and, therefore, are 

most ideal for complex medical diagnosing processes. However, their high computational 

requirements reveal an imperative for real-time environments' optimizations. In a similar manner, 

approaches such as IoV-BCFL and Privacy-Preserving GNN have high security and privacy concern 

but lack in terms of scalability when executed in capabilities-constrained networks. 

The integration of blockchain technology, for instance, in methodologies such as Blockchain-Enabled 

FL (FedAnil) and MDD-FedGNN, introduces a robust mechanism for model update integrity and 

information authenticity assurance. In such methodologies, performance in collaboration 

environments with high requirements for security and information privacy is particularly eminent. 

However, computational cost in operations with a background in a blockchain raises a spotlight for 

lightweight agreement protocols and efficient crypographic constructions for widespread use. 

Adversarial attack robustness is a continued concern in all methodologies. Techniques such as 

contrastive learning, weighted aggregation, and techniques for attention-fusion have a profound role 

in model robustness improvement. As successful in handling most scenarios of adversarial inputs, 

improvements must follow in handling real-time suppression of attack, high accuracy in high 

perturbations, and high accuracy in heterogeneous environments. 

The Proposed Method distinguishes itself with its balanced performance in all dimensions of 

evaluation. With its trust-weighted fusion and blockchain-verificated integration, not only is it 

enhancing accuracy and efficiency in federated learning, but it is also providing high robustness in 

attack through adversaries. Besides, its computational efficiency makes it a perfect fit for big-data and 

resource-constrained scenarios, providing a general-purpose solution for a range of domains. 

Future work will have to focus on creating a larger-scale version of such techniques with reduced 

computational requirements. Efficient lightweight techniques, flexible fusion processes, and real-time 

adversary attack detection techniques can make federated processes even efficient and secure. 

Domain-specific federated frameworks can actually address specific requirements of specific 

application domains, such as healthcare, IoT, and transportation, and counter specific challenges in 

such domains. 
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In summary, both the weaknesses and strengths of state-of-the-art federated learning and 

countermeasures for adversary attack have been pinpointed in this work. With trust-weighted fusion 

and blockchain-based checking, proposed scheme reveals a new direction for efficient, secure, and 

high-performance federated learning frameworks. In this direction, future work and development will 

become increasingly significant in overcoming ever-evolving adversaries and creating federated 

learning for real-world environments. 
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