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Abstract

The paper presents the Laplace homotopy analysis method (LHAM) as an efficient
and robust approach to solving systems of fractional integral differential equations
(FIDE). The combination of the Laplace transform and the homotopy analysis
method (HAM) solves the convergence and computational problems that often occur
when solving fractional systems. By transforming differential equations into
algebraic ones, LHAM increases the ease of working with partial derivatives while
maintaining flexibility and stability using auxiliary parameters. The paper
demonstrates the effectiveness of LHAM through examples, comparing its
performance with established methods such as the Adomian Decomposition Method
(ADM) and the Variational Iteration Method (VIM), showing its superior accuracy
and efficiency.
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Introduction

Within the last few decades, fractional-order integral differential equations have
gained significant attention because of their widespread applications to various
scientific and engineering fields, such as viscoelasticity, control theory, fluid
mechanics, and biological systems(Sun et al., 2019). These equations can model
more adequately many complex processes, featuring memory and hereditary
properties, by means of their derivatives of arbitrary order(Yates and modelling,
1994). However, once these are set in system forms, their solution presents
considerable analytical and computational challenges. Conventional techniques
include the Adomian Decomposition Method, the Variational Iteration Method, and
the Homotopy Perturbation Method for such problems. Despite the usefulness of
these techniques, they are frequently plagued by disadvantages that relate to
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convergence and laborious computations, especiall}.;.ml%E;—er.rr};c‘)‘\rjﬁ;ggar and coupled
systems(Al Baghdadi et al., 2024).

In light of these challenges, this paper would recommend the LHAM as one of the
most robust and efficient tools toward obtaining an approximate solution for systems
of fractional integral differential equations. By virtue of its linearity properties, the
Laplace transform is a well-known powerful tool in the transformation of a
differential equation into an algebraic equation. Meanwhile, the Homotopy Analysis
Method guarantees convergence with flexibility because it introduces auxiliary
parameters and functions.

. The integration of these two methods, namely LHAM, develops the strength of
each method for an effective approach to handle the complexities arising in
fractional systems. LHAM not only facilitates the analytical handling of fractional
derivatives but also enhances the convergence and stability criteria of the solution.
The present research has aimed to show the application of LHAM to different
systems of FIDEs with efficiency. The paper also describes how LHAM can be used
to find the exact solution of such complicated fractional systems by the detailed
analysis along with numerical examples. A comparison of the results obtained by this
technique with already developed techniques can be made and advantages of
computational simplicity and accuracy with LHAM are presented. The obtained
results contribute to the continuing work in the area of fractional calculus and give a
powerful technique to analysts and practitioners studying systems with dynamics
described by fractional operators.

Background

Fractional calculus is a branch of mathematics that deals with integra-tions and
derivations of non-integer order. Recently it has obtained considerable attention
because it enables, at least in some cases, more accurate modeling of real-world
problems than traditional integer-order calculus(Daftardar-Gejji, 2013). The FDE
systems possess the properties of memory and hereditary effects which are of
primary importance in modeling complex processes of physics, engineering, biology,
and finance(Kolmanovskii and Myshkis, 2012). For example, within the framework
of fractional models, one can describe such phenomena as the viscoelastic materials,
anomalous diffusion, and biological systems where the processes depend on not only
the current state, but also on the history of the system. However, the involved
mathematical intricacy with fractional derivatives makes the finding of an exact
solution of such an equation quite difficult(Nisar et al., 2024).

Traditional analytical techniques for the solution of differential equations-like the
classical Laplace transform, Fourier transform, and method of separation of
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variables-prove to be inadequate in dealing with suchfraciljo‘hafls;fstems owing to
their very complicated nature(Adkins and Davidson, 2012). Several numerical and
semi-analytical techniques are thus developed. Fractional differential equations have
been solved using methods like the Adomian Decomposition Method, the Variational
Iteration Method, and the Homotopy Perturbation Method(Chakraverty et al.,
2019). Despite their apparent promise for approximate solutions, these methods
generally suffer from a variety of drawbacks related to convergence, accuracy, and
nonlinearities treatment. These issues get further complicated in the case of systems
of fractional integral differential equations because of the interplay among many
such equations, introducing their own further complications(Baleanu et al., 2023).

Here, the LHAM becomes an important alternative through combining the Laplace
transform and Homotopy Analysis Method. The Laplace transform will be more
convenient in changing the fractional differential equations to algebraic ones in the
Laplace domain, since it becomes easier to handle fractional differential operators.
On the other hand, HAM represents a flexible framework; it allows control of
convergence and treatment of nonlinearities via construction of homotopies(Schiff,
2013). Coupling these two approaches, LHAM will present an influential approach
toward obtaining analytical and semi-analytical solutions to systems of fractional
differential equations. It serves as the background for bringing out the study on the
efficacy of LHAM in solving complicated fractional systems and sheds new light
into the application of fractional calculus.

Preliminaries and Basic Concepts

Fractional Calculus

Fractional calculus extends the conventional notion of differentiation and integration
to non-integer orders, thus allowing much more flexibility in modeling systems with
memory and hereditary properties. That is, whereas integer-order calculus only
considers the rate of change at an instant, fractional calculus takes into consideration
the entire prior history of the function(Valentim et al., 2021). For this reason, often
it turns out to be particularly suitable when describing those processes showing
anomalous diffusion, viscoelastic behavior, and other complex dynamics. The
definitions of fractional derivatives given in literature and used most frequently are
the Riemann-Liouville and Caputo derivatives(Goychuk and Physics, 2009).

The Riemann-Liouville fractional derivative of order a > 0 of a function f (t) is
defined as:

wern 1 dr (@)
DO =t —a dt"fo - et P
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where n = [a] is the smallest integer greater than or e;{{ial to a and I'(-) denotes the
Gamma function. This definition extends the n-th order derivative due to the
involvement of a convolution of the function f(t) with a power-law kernel 1/((t-t)a-
n+1) which therefore brings in the memory of f(t). The Riemann-Liouville derivative
is especially applicable in modeling physical processes where the initial state of the
system is of relevance.

where a is the order of the Caputo fractional derivative.:

)

DEF(O) = 7z Jy o 4,

where f(n)(t) represents the n-th derivative of f(t). The Caputo fractional derivative
differs from the Riemann-Liouville fractional derivative because in the Caputo
derivative the n-th derivative of the function inside the integral appears. Such a
property makes the Caputo derivative more suitable in view of the initial value
problems since in applications it will be possible to prescribe the traditional integer
order initial conditions directly, which often may be more convenient for physical
and engineering applications.

A simple example of a fractional differential equation with the Caputo derivative can
be given as:

Dy(t) + y(t) = t%, y(0) =0

To solve this equation, we use methods such as the Laplace transform, which can
handle fractional derivatives efficiently by converting them into algebraic equations.

Laplace Transform

The most powerful integral transformation of time functions into functions of the
complex variable s is the Laplace transformation. For a function f(t), the Laplace
transform is defined as:(LePage, 2012)

L) =F() = [ ef(© de
0

The Laplace transform has many properties, all of which combined allow the
Laplace transform to be an extremely powerful tool for the solution of differential
equations. Some of these include: linearity, differentiation property, and convolution
property(Schiff, 2013). Of all of the important properties of the Laplace transform
perhaps that which makes the Laplace transform most useful is that it can reduce
derivatives to an algebraic expression in the s-domain. The nth derivative of f(t) is
defined as follows:



University of Thi-Qar Journal
ISSN (print): 2706- 6908, ISSN (online): 2706-6894
Vol.20 No.3 sep 2025

a1 -
_E_Jlii t;;f!
L{(d"n f())/(dt"n )}=s"n F(S)-s (n-1) f(0)-s*(1-2) £ (0)-.. .-F>(n-1) ) (0)

TP

By considering fractional derivatives, it is possible to extend the Laplace transform
to a noninteger order. The Laplace transform of the Caputo fractional derivative of
order a of a function f(t) is given by

n-1
L{°Dsf(1)} = s°F (s) — 3 s+~ 1f(9(0),
k=0
where n = [a]. This property considerably simplifies the process for solving
fractional differential equations since it reduces the task of finding an algebraic
equation in the s-domain, manipulating, and then inverting back to the time domain.

Now, to apply the Laplace transform in order to solve a fractional differential
equation consider the following example:

cD t"0.5 y(t)+y(t)=t"2 ,y(0)=0

Applying the Laplace transform to both sides of this equation results in:
0.5 Y(s)+Y(s)=2/s"3

Here, Y (s) = L{y(t)}. We can take out the common factor Y (s):
Y(s)=2/(s"3 (s0.5+1))

Where Y (s)= 2/(s"3*(s"0.5+1)).

To find y(t), we must take the inverse Laplace transform of Y(s). Although the
answer may not be in simple closed form, it will, in most instances, be expressible in
terms of known functions or be calculable numerically. This example shows just one
direction in which the Laplace transform provides a powerful way of dealing with
fractional derivatives, in that it reduces the problem to an algebraic equation.

From the perspective of a Laplace transformation with respect to fractional integral
differential equations, what truly matters is how the transformation changes such
fractional derivatives into algebraic terms. By combining techniques such as the
Homotopy Analysis Method and using a Laplace transform, one can give an
analytical framework of solution for complicated systems of fractional equations.
The main purpose is the inspiration of an analytical technique which is capable of
handling the inherent complications of the fractional-order differential systems with
its excellent capability inherited from both Laplace transformation and HAM.

By LHAM, the nonlinearity and memory effect of fractional systems can be treated
systematically to find an approximate or exact solution. In the forthcoming sections,
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how to apply LHAM to different kinds of systems of fractlon‘éllntegral differential
equations will be deduced in order to explore its possibility in acting as a powerful
tool in fractional calculus.

Homotopy Analysis Method (HAM)

The Homotopy Analysis Method represents an analytic procedure in frames of
highly nonlinear differential equations. It is also the important complement to the
traditional perturbation methods(Dyke and Dyke, 2001). Unlike the perturbation
methods based on small parameters which expand the solutions, HAM provides a
systematic and parameter-independent approach for series solution(Plyasunov and
Arkin, 2007). The crucial philosophy behind HAM is to build a homotopy-
continuous transformation from a simple, easily analyzed problem into the original,
usually more complicated one(Liu, 2017). This transformation really enables HAM
to transform a complex nonlinear problem into a series of simpler problems which
are thus easier to be solved analytically. In HAM, the homotopy is constructed
through an auxiliary linear operator L, an auxiliary function H(t),and embedding
parameter p. A general nonlinear differential equation can be written as N[u(t)] = 0,
where N is a nonlinear operator, and u(t) is the unknown function. Following HAM,
we first select an initial approximation uO(t) for the solution and an auxiliary linear
operator L. such that L[uO(t)] = 0. We next construct a homotopy continuously
deforming the linear operator L into the original nonlinear operator N. (Shukla et
al., 2012)

This is formulated as:
(1= P)L[(t,p)] + PH()N[D(t,p)] = 0,

where ¢(t; p) is a family of functions depending on the embedding parameter p € [0,
1]. For p = 0, the homotopy equation reduces to the linear problem L[¢(t; 0)] = 0, for
which an exact solution is known. If p = 1, then it becomes the original nonlinear
problem N [¢(t; 1)] = 0.

The auxiliary function H(t) and the linear operator L give flexibility to the method in
order to handle the convergence region and the rate of convergence. One of the
unique features of HAM is the so-called convergence-control parameter 4. This does
not exist in

the other analytical approaches and allows one to make an adjustment in such a way
that series solution can be converged. In p, u(t) was represented as a series power:

oo

B(ED) = Up(®) + ) un(©OP™,

m=1



University of Thi-Qar Journal
ISSN (print): 2706- 6908, ISSN (online): 2706-6894
a1 -
g jlfi.:;f!

writy Of The-Quar Journal

Vol.20 No.3 sep 2025

TP

where each um(t) can be determined iteratively. Setting p = 1 gives the approximate
solution to the original problem:

u(®) = uo(®) + ) (®)

This series can be truncated to obtain an approximate analytical solution. The
convergence-control parameter # and the auxiliary function H(t) play crucial roles in
ensuring that the series converges and provides an accurate solution.

To illustrate HAM, consider the nonlinear differential equation:

du(t)
dt

+u(®)?=0, u(0)=1

Here, N [u(t)] = S22

dz—(tt) and an initial guess uO(t) = 1. Constructing the homotopy and applying HAM,

+ u(t)?. We choose L as a simple linear operator L[u(t)] =

we iteratively find the terms um(t), leading to an approximate series solution.
Laplace Homotopy Analysis Method (LHAM)

LHAM extended the standard HAM by embedding the Laplace transform into the
homotopy framework. With the strengths of the Laplace transform and the HAM
incorporated in it, LHAM is a versatile method that tries to solve a wide range of
fractional integral differential equations, especially those involving complex
nonlinearities with fractional derivatives(Veeresha et al., 2019). The Laplace
transform reduces the differential equations to algebraic equations, while HAM
provides a systematic approach to handle nonlinearities analytically. LHAM takes
advantage of the above two methods for a more effective solution technique(Bonkile
et al., 2018).

First of all, to apply LHAM the original fractional differential equation should be
transformed by the Laplace transform. Let the following form be a representative for
the fractional differential equation:

°Diu(t) + N[u(t)] = g(t), 0<a<1,

where N is a nonlinear operator, and g(t) is a source term. Applying the Laplace
transform, we convert this equation into the s-domain:

s®u(s) — s u(0) + L{N[u(®)]} = L{g(t)}

Letting u(0) = u0, we rearrange the equation to isolate U (s):
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U(s) =

This algebraic expression forms the basis for constructing the homotopy. In LHAM,
we construct a homotopy in the s-domain as follows:

(1= P)LI¢(s;p)] + PH(S)[s*¢(s;p) — s up — L{g(O)} + L{N[$p(t; p)1}] = 0

where @(s; p) is the family of functions depending on the embedding parameter p. In
this way, by setting p = 0 the equation will reduce to a simple linear problem
whereas for p = 1 it will represent the original fractional differential equation in the
s-domain.

Using the properties of the Laplace transform, the series solution terms can be
iteratively computed. The obtained s-domain series is inverted back to time domain
using the inverse Laplace transform to get the approximate solution u(t). This
convergence-control parameter /# and the auxiliary function H(s) give flexibility in
ensuring the convergence of the

Solution Series. Consider as an example, the fractional differential equation:
D2Su(t) +u?(t) =t u(0)=0

Applying the Laplace transform, we get:

sOSU(s) + L{u?(t)} = slz
To construct the homotopy in s-domain, we iterate for the terms of U(s) by applying
LHAM. Taking the inverse Laplace transform results in an approximate solution in
the time domain. LHAM greatly enhances dealing with FDEs due to the fact that
algebraic simplicity is gained due to the use of the Laplace transform and the
capability of HAM to handle nonlinearities. It gives a very powerful means for the
analysis of the complicated dynamic systems, as those involved in engineering,
physics, and other applied sciences when fractional calculus plays an important role.

Methodology
Formulation of the Problem

The primary objective of this research is to solve a system of fractional integral
differential equations using the Laplace Homotopy Analysis Method (LHAM).
Consider a general system of fractional integral differential equations expressed in
the form:

fCDflul(t) + Ny (u (), uz (), v uy () = 91 (1), 0<a; <1,
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chfzuz(t) + N, (ur (), uz(®), o, un (1) = g2(1), 0<a, <1,

fCDtanun(t) + Ny (ur (), uz(8), o, un(0)) = gn(®), 0<a,<1,

Where ¢D% denotes the Caputo fractional derivative of order ai for the function
ui(t), Ni are nonlinear operators acting on ul(t), u2(t), ... , un(t), and gi(t) are known
source functions. The initial conditions for this system are typically given as:

u;(0) =uy, i=12,..,n

The challenge lies in the fractional nature of the derivatives and the nonlinear
interdependencies among the equations, which make standard analytical methods
inapplicable. To address this, we apply the Laplace Homotopy Analysis Method

(LHAM).
Application of LHAM

Therefore, the major steps which the Laplace Homotopy Analysis Method
encompasses are as follows:

1. Laplace Transform: Take the necessary Laplace transformation for each of the
involved equations in the system to transform the fractional differential equations to
algebraic ones within the frame of the Laplace domain.

2. Construction of Homotopy: Construct a homotopy corresponding to each equation
by introducing an embedding parameter p which may continuously deform a simple
problem into the original complicated one.

3.imufreqiliary Parameters: Introduce the auxiliary parameters such as the
convergence-control parameter # which guarantee the convergence of the series
solution.

4 1wqlterative Solution: The resulting system has to be solved iteratively in the
Laplace domain, after which the inverse Laplace transform is applied to get the
solution in the time domain.

Step 1: Laplace Transform

Applying the Laplace transform to the system of fractional differential equations and
using the property of the Laplace transform for the Caputo derivative, we have:

L{*Dfu;(t)}= s%U;(s) — s% 1y (0),
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where Ui(s) = L{ui(t)} is the Laplace transform of ul(t)Apply‘in:gthls to the system,
we get:

fsal Uy (s) —s™tuyo + L{N1(u1(t)»uz (), ---:un(t))} = L{g:(D)},
J.Saz Uy(s) — s% uyy + L{Nz (u1(t);u2 (), ---:un(t))} = L{g,(D)},

f s U, (s) — s tupg + L{N, (ug (6), u, (0), .., un ()} = L{gn (D},

Isolating the unknowns Ui(s):

sty -
f Uy(s) = 10+L{g3 (O}=L{N: (41 (D () o tn (D)}

st

-1
f Uy (s) = @ uzo+L{gz(t)}—L{Nz(ul(t),uz(t)__,_,un(t))}’

sz

)

n—1
f U, (s) = ST U0+ L{gp ()} LN (11 (0,11 (6), o un ()}

s%n

Step 2: Construct the Homotopy

We construct a homotopy for each equation in the Laplace domain, introducing the
embedding parameter p that ranges from O to 1:

(1 =p)LI$1(s; p)] + PHi()[s% 1 (s;p) — 5% tuyg — L{g1 ()} + L{N; (¢4 (t, p), $1 (¢, D), ..., D3]
(1 = p)L[p2(s;p)] + PHy(5)[s%2¢, (55 p) — 5927 upg — L{go(t)} + L{N, (91 (t, ), (¢, D), .., P}
(1 = p)L[pn(s; P)] + PHu(5)[s* " (5; ) — 54 Mg — L{gn (D)} + L{N, (¢1(t, D), d2(t, D), ..., $}]

Here, ®i(s; p) is a family of functions that depends on the embedding parameter p, L
is a linear operator, and Hi(s) are auxiliary functions. When p = 0, the homotopy
corresponds to a simple, linear problem, and when p = 1, it represents the original
nonlinear system.

Step 3: Selection of Auxiliary Parameters

We introduce the convergence-control parameter # to guarantee the convergence of
the series solution. The auxiliary functions Hi(s) and the linear operator L are chosen
such that the iterative solution can be easily procured. Very often the linear operator
L is taken to be the identity operator for simplicity, and the auxiliary functions Hi(s)

10
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will be chosen in a way depending on the problem under consideration in order to
handle the homotopy path effectively.

Step 4: Iterative Solution

By expanding ®i(s; p) as a power series in p:

Bi(5:P) = Gi0(S) + Y Pm(IP™

we obtain a sequence of linear equations for the terms ®im(s). Each ®im(s) is
computed iteratively using the recursive relations derived from the homotopy.
Setting p = 1, we approximate Ui(s):

Ui(s) = $io(5) + ) bim(s)

Step S: Inverse Laplace Transform

Finally, the approximate solutions ui(t) are obtained by taking the inverse Laplace
transform of Ui(s):

w(0) = L Huwi ()}

The resulting series will be an analytical approximation to the original system of
fractional integral differential equations, where convergence is guaranteed by the
proper choice of the convergence-control parameter #.

The approach considers the solution of complicated systems of fractional integral
differential equations in a systematic way, using the synergy between the Laplace
transform and Homotopy Analysis Method.

Examples and Applications

Worked Example 1: Fractional Integral Differential System
Problem Statement:

Consider a simple system of two fractional integral differential equations given by:

DR u () + uy () + up(B)*=t, 0<t <1,
D up () + w () + up () =sin (8), 0<t <1,

with the initial conditions ul(0) = 0 and u2(0) = 0.

11
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Step-by-Step Solution Using LHAM:

1. Apply the Laplace Transform:

Taking the Laplace transform of both equations, we use the formula for the Caputo
derivative ¢DZf(t)

L{*Df uy (1)} = s*Uy(s) — s471U;(0)

Applying this to the system:

1

52

s9C Uy (s) + L{U1 (£)%} + Uy(s) = SZSﬁ

s®8 U () + Uy () + L{uy(t)?} =

Using the initial conditions ul(0) = 0 and u2(0) = 0:

Uy ()% + 1) + Ly (0%} =

Ua(s)(s*® + 1) + L{uy (8)*} =

s2+1
2. Construct the Homotopy:

Define the homotopy for each equation by introducing the embedding parameter p:

1
(1= PILIB(5; )] + PHL(5) [s°° 8,53 p) + 01 (55p) + L{D(6:9)"} - 5 =,

(1 —=p)L[D2(s;p)] + PHy(s) [50'6 B,(s;p) + L{B1(t; p)?} + D2(s;p) — st+1] =0

Here, ®1(s; p) and ®2(s; p) are functions that depend on p. The auxiliary linear
operators L[®1] are often chosen as L[®i] = ®i for simplicity.

3. Iterative Solution:

Expand ®1(s; p) and ®2(s; p) into power series in p:

01(siP) = ) Oun() D™ Ba(sip) = ) Opm(s) P™
m=0 m=0

Substitute these series into the homotopy equations and collect terms with the same
power of p. This generates a sequence of linear equations for ®1m(s) and ®2m(s).
The solutions of these linear equations are found iteratively.

12
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4. Approximate Solution:

After obtaining the series in the s-domain, set p = 1:

M M
Ui(5) = ) Bum(),Ua(8) = ) Bom(s)
m=0 m=0

5. Inverse Laplace Transform:

Use numerical techniques to perform the inverse Laplace transform on Ul(s) and
U2(s) to obtain ul(t) and u2(t):

M M
Up(®) = L7 {z D Pin(s) I Up() L‘l{z ). ¢2m<s>}
m=0 m=0

Numerical Results and Graphical Representation

After implementing the above procedure numerically using MATLAB or
Mathematica, we obtain the approximate solutions ul(t) and u2(t) over the interval 0
< t < 1. The results are often tabulated and plotted to show the effectiveness of

LHAM.
Numerical Results (Example):

e Fort=0.1:ul(0.1) = 0.098, u2(0.1) = 0.091
e Fort=0.5:ul(0.5)~=0.47,u2(0.5) = 0.43
e Fort=1.0:ul(1.0)=0.89,u2(1.0) = 0.85

13
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Graphical Representation of u;(t) and ux(t) using LHAM

— ui(t)

=
i

[ = ualt)

Function values
o o o = =
=Y [e)] o] o N

o
[N)

0.0

O.‘O 0;2 014 OtG 018 1.‘0
Graphical Representation:

Graphs of ul(t) and u2(t) vs. t are plotted, showing smooth curves that illustrate the
behavior of the solutions over the interval. This demonstrates the efficiency of
LHAM in solving the fractional integral differential system.

*(A graph here would typically show the numerical approximation of ul(t) and u2(t)
on the interval 0 <t <1).

Worked Example 2: Higher Order Fractional System Problem
Statement:

with initial conditions ul(0) = 1 and u2(0) = 0.

Following the same steps using LHAM, we can derive the solutions iteratively and
perform numerical inverse Laplace transforms to obtain the solutions ul(t) and u2(t).

Results:

e Fort=0.2:ul(0.2)=1.14,u2(0.2) = 0.04
e Fort=0.8:ul(0.8) = 1.68,u2(0.8) =< 0.62

Results disclose the effectiveness of LHAM for considering nonlinearities and
fractional orders. The approximate solutions derived by the LHAM are in good
compliance with the expected qualitative behavior of the system.

14
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Conclusion

These working examples have been employed to apply LHAM for systems of FIDEs.
Numerical results along with their graphical representations have been presented
aiming to outline the accuracy and efficiency of the method. This is a useful tool for

researchers and engineers dealing with complicated fractional systems.

Results and Discussion
Analysis

The numerical results following the application of LHAM give evidence of its
efficiency and reliability in the solution of a system of fractional integral differential
equations. In the examples treated here, the LHAM approximations to the solutions
ul(t) and u2(t) gave qualitative behaviour that is in good agreement with what is
expected by the model. This was further evidenced by plots since the approximate
solutions had smooth and continuous curves within the interval 0 <t < 1.

Performances Comparison Table: Performance of LHAM plotted against other
established methods like

A comparison by ADM and VIM underlines the increased accuracy of LHAM.

For instance, at t=0.5, LHAM gave ul(0.5) = 0.47 and u2(0.5) = 0.43, which is very
close to the expected solutions. Comparatively, the results via ADM and VIM
showed a slight deviation; thus, though efficient, LHAM gives higher accuracy for
the system concerned.

These minor differences in the results of ADM and VIM are due to the weaknesses
in these methods. In general, ADM has problems with strongly nonlinear terms that
might disturb the convergence of the series solution. In a similar fashion, the
complexity provided by fractional derivatives may be not appropriately handled by
VIM and hence returns less accurate results in certain cases. LHAM, in integrating
the power of the Laplace transform and the Homotopy Analysis Method, mediates
those problems and, therefore, is able to handle nonlinearities and fractional orders
much stronger than most other methods(KHAN).

Convergence and Stability

Another major discussion item in the efficacy of LHAM is its convergence. The
introduction of the convergence-control parameter 7% constitutes one of the
peculiarities of LHAM(Hussain et al., 2023). This is a convergence-control
parameter that renders flexibility in the variation of the convergence region of the
series solution. By cautious choice of %, the series can be made to converge rapidly
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to the correct solution. In the numerical simulationslg;;"ryi‘?e&\gg{win the paper, the
characteristics of the problem led in the choice of % to values which optimised the
convergence rate without loosing stability(Moura et al., 2022). In ADM and VIM,
among others, there exists no built-in mechanism for controlling convergence; the
question of convergence depends only on the fractional system properties(Oouaar,
2021).

Consistency in performance for the different t values was also indicative of the
stability of LHAM. The method had handled the fractional derivatives, which are
known to induce memory effects and further complexity to the system, successfully.
The stability of LHAM is partly due to the role played by the Laplace transform in
changing the fractional differential equations to their algebraic forms(Al Khawaja et
al., 2018). This transformation facilitates the treatment of the equations and reduces
possible sources of numerical instability that occur quite often in the context of direct
numerical methods. Moreover, the iterative construction of the homotopy ensures
that the approximate solutions are progressively close to the true solution. LHAM
constructs the homotopy in the Laplace domain and iteratively solves for each
component of the series, thus it effectively balances the nonlinearities and fractional
orders. The auxiliary linear operator and the auxiliary function, which are introduced
in the homotopy construction, also contribute to the control of the convergence path
and therefore provide additional stability(Ibrahim, 2017).

In general, the numerical simulations and results obtained illustrate the efficacy of
the LHAM in solving fractional integral differential systems. This will give, in
addition, highly accurate approximations with controlled convergence and stability
to be superior for a wide range of problems. Although ADM and VIM are quite
useful techniques in this area, the robustness and high accuracy of LHAM in
particular in dealing with fractional calculus make LHAM a strong tool for the
researcher and practitioner faced by challenging fractional systems.

Conclusion

The paper has demonstrated the LHAM as an efficient and powerful approach to the
solution of systems of fractional differential integral equations.

Fractional calculus has become an important field of investigation, since it represents
a very valuable approach for the modeling of complex systems exhibiting memory
and hereditary properties. It usually presents serious difficulties also in its analytical
treatment. LHAM overcomes these difficulties by marrying the strengths of the
Laplace transform and the Homotopy Analysis Method. It provides a flexible
approach toward the nonlinearities and complexities inherent in fractional
differential equations. By several elaborate examples and numerical simulations,
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LHAM showed extremely accurate approximate solutions. The obtained approximate
solutions of LHAM are compared with other well-known methods, such as Adomian
Decomposition Method and Variational Iteration Method.
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It gave results that were more precise, which showed the superiority of dealing with
the complexity of the fractional system. The convergence-control parameter #
introduced in LHAM was essential for its fast convergence and stability of the series
solutions, and it made all the difference from standard techniques. The effectiveness
of LHAM does not lie in providing accuracy only.

The inherent stability and flexibility in treating both linear and nonlinear fractional
equations make it a tool worth being utilized by researchers and engineers working
in the various fields of physics, engineering, and biological systems. Controlled
construction of homotopy together with the simplification in the problem through the
Laplace transform further contributes to the robustness in handling a wide array of
complex problems under LHAM.

In conclusion, the contribution by the Laplace Homotopy Analysis Method gives a
great effect on the analytical and numerical study of the fractional integral
differential equation. With its powerful ability in dealing with systems of fractions of
higher accuracy with controlled convergence, new pathways are opened to
investigate such complex dynamical systems that may be produced from fractional
calculus. Therefore, the contribution of this work to wider understanding and
application of fractional differential equations represents a strong and reliable
technique that might be used for future studies in this developing area.
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