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Abstract 

The paper presents the Laplace homotopy analysis method (LHAM) as an efficient 

and robust approach to solving systems of fractional integral differential equations 

(FIDE). The combination of the Laplace transform and the homotopy analysis 

method (HAM) solves the convergence and computational problems that often occur 

when solving fractional systems. By transforming differential equations into 

algebraic ones, LHAM increases the ease of working with partial derivatives while 

maintaining flexibility and stability using auxiliary parameters. The paper 

demonstrates the effectiveness of LHAM through examples, comparing its 

performance with established methods such as the Adomian Decomposition Method 

(ADM) and the Variational Iteration Method (VIM), showing its superior accuracy 

and efficiency. 
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Introduction  

Within the last few decades, fractional-order integral differential equations have 

gained significant attention because of their widespread applications to various 

scientific and engineering fields, such as viscoelasticity, control theory, fluid 

mechanics, and biological systems(Sun et al., 2019). These equations can model 

more adequately many complex processes, featuring memory and hereditary 

properties, by means of their derivatives of arbitrary order(Yates and modelling, 

1994). However, once these are set in system forms, their solution presents 

considerable analytical and computational challenges. Conventional techniques 

include the Adomian Decomposition Method, the Variational Iteration Method, and 

the Homotopy Perturbation Method for such problems. Despite the usefulness of 

these techniques, they are frequently plagued by disadvantages that relate to 
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convergence and laborious computations, especially for nonlinear and coupled 

systems(Al Baghdadi et al., 2024). 

In light of these challenges, this paper would recommend the LHAM as one of the 

most robust and efficient tools toward obtaining an approximate solution for systems 

of fractional integral differential equations. By virtue of its linearity properties, the 

Laplace transform is a well-known powerful tool in the transformation of a 

differential equation into an algebraic equation. Meanwhile, the Homotopy Analysis 

Method guarantees convergence with flexibility because it introduces auxiliary 

parameters and functions. 

. The integration of these two methods, namely LHAM, develops the strength of 

each method for an effective approach to handle the complexities arising in 

fractional systems. LHAM not only facilitates the analytical handling of fractional 

derivatives but also enhances the convergence and stability criteria of the solution. 

The present research has aimed to show the application of LHAM to different 

systems of FIDEs with efficiency. The paper also describes how LHAM can be used 

to find the exact solution of such complicated fractional systems by the detailed 

analysis along with numerical examples. A comparison of the results obtained by this 

technique with already developed techniques can be made and advantages of 

computational simplicity and accuracy with LHAM are presented. The obtained 

results contribute to the continuing work in the area of fractional calculus and give a 

powerful technique to analysts and practitioners studying systems with dynamics 

described by fractional operators. 

Background 

Fractional calculus is a branch of mathematics that deals with integra­tions and 

derivations of non-integer order. Recently it has obtained considerable attention 

because it enables, at least in some cases, more accurate modeling of real-world 

problems than traditional integer-order calculus(Daftardar-Gejji, 2013). The FDE 

systems possess the properties of memory and hereditary effects which are of 

primary importance in modeling complex processes of physics, engineering, biology, 

and finance(Kolmanovskii and Myshkis, 2012). For example, within the framework 

of fractional models, one can describe such phenomena as the viscoelastic materials, 

anomalous diffusion, and biological systems where the processes depend on not only 

the current state, but also on the history of the system. However, the involved 

mathematical intricacy with fractional derivatives makes the finding of an exact 

solution of such an equation quite difficult(Nisar et al., 2024). 

Traditional analytical techniques for the solution of differential equations-like the 

classical Laplace transform, Fourier transform, and method of separation of 
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variables-prove to be inadequate in dealing with such fractional systems owing to 

their very complicated nature(Adkins and Davidson, 2012). Several numerical and 

semi-analytical techniques are thus developed. Fractional differential equations have 

been solved using methods like the Adomian Decomposition Method, the Variational 

Iteration Method, and the Homotopy Perturbation Method(Chakraverty et al., 

2019). Despite their apparent promise for approximate solutions, these methods 

generally suffer from a variety of drawbacks related to convergence, accuracy, and 

nonlinearities treatment. These issues get further complicated in the case of systems 

of fractional integral differential equations because of the interplay among many 

such equations, introducing their own further complications(Baleanu et al., 2023).  

Here, the LHAM becomes an important alternative through combining the Laplace 

transform and Homotopy Analysis Method. The Laplace transform will be more 

convenient in changing the fractional differential equations to algebraic ones in the 

Laplace domain, since it becomes easier to handle fractional differential operators. 

On the other hand, HAM represents a flexible framework; it allows control of 

convergence and treatment of nonlinearities via construction of homotopies(Schiff, 

2013). Coupling these two approaches, LHAM will present an influential approach 

toward obtaining analytical and semi-analytical solutions to systems of fractional 

differential equations. It serves as the background for bringing out the study on the 

efficacy of LHAM in solving complicated fractional systems and sheds new light 

into the application of fractional calculus. 

Preliminaries and Basic Concepts  

Fractional Calculus  

Fractional calculus extends the conventional notion of differentiation and integration 

to non-integer orders, thus allowing much more flexibility in modeling systems with 

memory and hereditary properties. That is, whereas integer-order calculus only 

considers the rate of change at an instant, fractional calculus takes into consideration 

the entire prior history of the function(Valentim et al., 2021). For this reason, often 

it turns out to be particularly suitable when describing those processes showing 

anomalous diffusion, viscoelastic behavior, and other complex dynamics. The 

definitions of fractional derivatives given in literature and used most frequently are 

the Riemann-Liouville and Caputo derivatives(Goychuk and Physics, 2009). 

The Riemann-Liouville fractional derivative of order α > 0 of a function f (t) is 

defined as: 

𝐷𝑡
𝑎𝑓(𝑡) =

1

Γ(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑡(𝜏)

(𝑡 − 𝜏)𝑎−𝑛+1
𝑑𝜏,

𝑡

0
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where n = ⌈α⌉ is the smallest integer greater than or equal to α and Γ(⋅) denotes the 

Gamma function. This definition extends the n-th order derivative due to the 

involvement of a convolution of the function f(t) with a power-law kernel 1/((t-τ)a-

n+1) which therefore brings in the memory of f(t). The Riemann-Liouville derivative 

is especially applicable in modeling physical processes where the initial state of the 

system is of relevance. 

where α is the order of the Caputo fractional derivative.: 

c𝐷𝑡
𝑎𝑓(𝑡) =

1

Γ(𝑛−𝛼)
∫

𝑓(𝑛)(𝜏)

(𝑡−𝜏)𝑎−𝑛+1
𝑑𝜏

𝑡

0
, 

where f(n)(τ) represents the n-th derivative of f(τ). The Caputo fractional derivative 

differs from the Riemann-Liouville fractional derivative because in the Caputo 

derivative the n-th derivative of the function inside the integral appears. Such a 

property makes the Caputo derivative more suitable in view of the initial value 

problems since in applications it will be possible to prescribe the traditional integer 

order initial conditions directly, which often may be more convenient for physical 

and engineering applications. 

A simple example of a fractional differential equation with the Caputo derivative can 

be given as: 

c𝐷𝑡
0.5𝑦(𝑡) + 𝑦(𝑡) = 𝑡2 , 𝑦(0) = 0 

To solve this equation, we use methods such as the Laplace transform, which can 

handle fractional derivatives efficiently by converting them into algebraic equations. 

Laplace Transform 

The most powerful integral transformation of time functions into functions of the 

complex variable s is the Laplace transformation. For a function f(t), the Laplace 

transform is defined as:(LePage, 2012) 

𝐿{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑒−𝑠𝑡𝑓(𝑡) 𝑑𝑡
∞

0

 

The Laplace transform has many properties, all of which combined allow the 

Laplace transform to be an extremely powerful tool for the solution of differential 

equations. Some of these include: linearity, differentiation property, and convolution 

property(Schiff, 2013). Of all of the important properties of the Laplace transform 

perhaps that which makes the Laplace transform most useful is that it can reduce 

derivatives to an algebraic expression in the s-domain. The nth derivative of f(t) is 

defined as follows: 
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L{(d^n f(t))/(dt^n )}=s^n F(S)-s^(n-1) f(0)-s^(n-2) f^' (0)-…-f^((n-1) ) (0) 

By considering fractional derivatives, it is possible to extend the Laplace transform 

to a noninteger order. The Laplace transform of the Caputo fractional derivative of 

order α of a function f(t) is given by 

where n = ⌈α⌉. This property considerably simplifies the process for solving 

fractional differential equations since it reduces the task of finding an algebraic 

equation in the s-domain, manipulating, and then inverting back to the time domain. 

Now, to apply the Laplace transform in order to solve a fractional differential 

equation consider the following example: 

cD_t^0.5 y(t)+y(t)=t^2  ,y(0)=0 

Applying the Laplace transform to both sides of this equation results in: 

s^0.5 Y(s)+Y(s)=2/s^3 

Here, Y (s) = L{y(t)}. We can take out the common factor Y (s): 

Y(s)=2/(s^3 (s^0.5+1)) 

Where Y (s)= 2/(s^3*(s^0.5+1)). 

To find y(t), we must take the inverse Laplace transform of Y(s). Although the 

answer may not be in simple closed form, it will, in most instances, be expressible in 

terms of known functions or be calculable numerically. This example shows just one 

direction in which the Laplace transform provides a powerful way of dealing with 

fractional derivatives, in that it reduces the problem to an algebraic equation. 

From the perspective of a Laplace transformation with respect to fractional integral 

differential equations, what truly matters is how the transformation changes such 

fractional derivatives into algebraic terms. By combining techniques such as the 

Homotopy Analysis Method and using a Laplace transform, one can give an 

analytical framework of solution for complicated systems of fractional equations. 

The main purpose is the inspiration of an analytical technique which is capable of 

handling the inherent complications of the fractional-order differential systems with 

its excellent capability inherited from both Laplace transformation and HAM. 

By LHAM, the nonlinearity and memory effect of fractional systems can be treated 

systematically to find an approximate or exact solution. In the forthcoming sections, 
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how to apply LHAM to different kinds of systems of fractional integral differential 

equations will be deduced in order to explore its possibility in acting as a powerful 

tool in fractional calculus. 

Homotopy Analysis Method (HAM) 

The Homotopy Analysis Method represents an analytic procedure in frames of 

highly nonlinear differential equations. It is also the important complement to the 

traditional perturbation methods(Dyke and Dyke, 2001). Unlike the perturbation 

methods based on small parameters which expand the solutions, HAM provides a 

systematic and parameter-independent approach for series solution(Plyasunov and 

Arkin, 2007). The crucial philosophy behind HAM is to build a homotopy-

continuous transformation from a simple, easily analyzed problem into the original, 

usually more complicated one(Liu, 2017). This transformation really enables HAM 

to transform a complex nonlinear problem into a series of simpler problems which 

are thus easier to be solved analytically. In HAM, the homotopy is constructed 

through an auxiliary linear operator L, an auxiliary function H(τ),and embedding 

parameter p. A general nonlinear differential equation can be written as  N[u(t)] = 0,  

where N is a nonlinear operator, and u(t) is the unknown function. Following HAM, 

we first select an initial approximation u0(t) for the solution and an auxiliary linear 

operator L such that L[u0(t)] = 0. We next construct a homotopy continuously 

deforming the linear operator L into the original nonlinear operator N. (Shukla et 

al., 2012) 

This is formulated as: 

(1 − 𝑃)𝐿[∅(𝑡, 𝑝)] + 𝑃𝐻(𝑡)𝑁[∅(𝑡, 𝑝)] = 0, 

where ϕ(t; p) is a family of functions depending on the embedding parameter p ∈ [0, 

1]. For p = 0, the homotopy equation reduces to the linear problem L[ϕ(t; 0)] = 0, for 

which an exact solution is known. If p = 1, then it becomes the original nonlinear 

problem N [ϕ(t; 1)] = 0. 

The auxiliary function H(t) and the linear operator L give flexibility to the method in 

order to handle the convergence region and the rate of convergence. One of the 

unique features of HAM is the so-called convergence-control parameter ℏ. This does 

not exist in 

the other analytical approaches and allows one to make an adjustment in such a way 

that series solution can be converged. In p, u(t) was represented as a series power: 

𝜙(𝑡, 𝑝) = 𝑢0(𝑡) + ∑ 𝑢𝑚(𝑡)𝑃𝑚,

∞

𝑚=1

 



University of Thi-Qar Journal       

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol.20  No.3 sep  2025 
  
 

7  

 
where each um(t) can be determined iteratively. Setting p = 1 gives the approximate 

solution to the original problem: 

𝑢(𝑡) = 𝑢0(𝑡) + ∑ 𝑢𝑚(𝑡)

∞

𝑚=1

 

This series can be truncated to obtain an approximate analytical solution. The 

convergence-control parameter ℏ and the auxiliary function H(t) play crucial roles in 

ensuring that the series converges and provides an accurate solution. 

To illustrate HAM, consider the nonlinear differential equation: 

𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑢(𝑡)2 = 0, 𝑢(0) = 1 

Here, N [u(t)] = 
𝑑𝑢(𝑡)

𝑑𝑡
+ 𝑢(𝑡)2. We choose L as a simple linear operator L[u(t)] = 

𝑑𝑢(𝑡)

𝑑𝑡
 and an initial guess u0(t) = 1. Constructing the homotopy and applying HAM, 

we iteratively find the terms um(t), leading to an approximate series solution. 

Laplace Homotopy Analysis Method (LHAM) 

LHAM extended the standard HAM by embedding the Laplace transform into the 

homotopy framework. With the strengths of the Laplace transform and the HAM 

incorporated in it, LHAM is a versatile method that tries to solve a wide range of 

fractional integral differential equations, especially those involving complex 

nonlinearities with fractional derivatives(Veeresha et al., 2019). The Laplace 

transform reduces the differential equations to algebraic equations, while HAM 

provides a systematic approach to handle nonlinearities analytically. LHAM takes 

advantage of the above two methods for a more effective solution technique(Bonkile 

et al., 2018). 

First of all, to apply LHAM the original fractional differential equation should be 

transformed by the Laplace transform. Let the following form be a representative for 

the fractional differential equation: 

c𝐷𝑡
𝑎𝑢(𝑡) + 𝑁[𝑢(𝑡)] = 𝑔(𝑡),   0 < 𝑎 < 1, 

where N is a nonlinear operator, and g(t) is a source term. Applying the Laplace 

transform, we convert this equation into the s-domain: 

𝑠𝑎𝑢(𝑠) − 𝑠𝑎−1𝑢(0) + 𝐿{𝑁[𝑢(𝑡)]} = 𝐿{𝑔(𝑡)} 

Letting u(0) = u0, we rearrange the equation to isolate U (s): 
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𝑈(𝑠) =
𝑠𝛼−1𝑢0 + 𝐿{𝑔(𝑡)} − 𝐿{𝑁[𝑢(𝑡)]}

𝑠𝛼
 

This algebraic expression forms the basis for constructing the homotopy. In LHAM, 

we construct a homotopy in the s-domain as follows: 

(1 − 𝑃)𝐿[𝜙(𝑠; 𝑝)] + 𝑃𝐻(𝑠)[𝑠𝑎𝜙(𝑠; 𝑝) − 𝑠𝑎−1𝑢0 − 𝐿{𝑔(𝑡)} + 𝐿{𝑁[𝜙(𝑡; 𝑝)]}] = 0 

where Φ(s; p) is the family of functions depending on the embedding parameter p. In 

this way, by setting p = 0 the equation will reduce to a simple linear problem 

whereas for p = 1 it will represent the original fractional differential equation in the 

s-domain. 

Using the properties of the Laplace transform, the series solution terms can be 

iteratively computed. The obtained s-domain series is inverted back to time domain 

using the inverse Laplace transform to get the approximate solution u(t). This 

convergence-control parameter ℏ and the auxiliary function H(s) give flexibility in 

ensuring the convergence of the 

Solution Series. Consider as an example, the fractional differential equation: 

c𝐷𝑡
0.5𝑢(𝑡) + 𝑢2(𝑡) = 𝑡,   𝑢(0) = 0 

Applying the Laplace transform, we get: 

𝑠0.5𝑈(𝑠) + 𝐿{𝑢2(𝑡)} =
1

𝑠2
 

To construct the homotopy in s-domain, we iterate for the terms of U(s) by applying 

LHAM. Taking the inverse Laplace transform results in an approximate solution in 

the time domain. LHAM greatly enhances dealing with FDEs due to the fact that 

algebraic simplicity is gained due to the use of the Laplace transform and the 

capability of HAM to handle nonlinearities. It gives a very powerful means for the 

analysis of the complicated dynamic systems, as those involved in engineering, 

physics, and other applied sciences when fractional calculus plays an important role. 

Methodology 

Formulation of the Problem 

The primary objective of this research is to solve a system of fractional integral 

differential equations using the Laplace Homotopy Analysis Method (LHAM). 

Consider a general system of fractional integral differential equations expressed in 

the form: 

∫ c𝐷𝑡
𝑎1𝑢1(𝑡) + 𝑁1 (𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡)) = 𝑔1(𝑡),    0 < 𝑎1 < 1, 



University of Thi-Qar Journal       

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol.20  No.3 sep  2025 
  
 

9  

 

∫ c𝐷𝑡
𝑎2𝑢2(𝑡) + 𝑁2 (𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡)) = 𝑔2(𝑡),    0 < 𝑎2 < 1, 

∫ c𝐷𝑡
𝑎𝑛𝑢𝑛(𝑡) + 𝑁𝑛 (𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡)) = 𝑔𝑛(𝑡),    0 < 𝑎𝑛 < 1, 

Where  𝐶𝐷𝑎𝑖 denotes the Caputo fractional derivative of order αi for the function 

ui(t), Ni are nonlinear operators acting on u1(t), u2(t), … , un(t), and gi(t) are known 

source functions. The initial conditions for this system are typically given as: 

𝑢𝑖(0) = 𝑢𝑖0,   𝑖 = 1,2, … , 𝑛 

The challenge lies in the fractional nature of the derivatives and the nonlinear 

interdependencies among the equations, which make standard analytical methods 

inapplicable. To address this, we apply the Laplace Homotopy Analysis Method 

(LHAM). 

Application of LHAM 

Therefore, the major steps which the Laplace Homotopy Analysis Method 

encompasses are as follows: 

1. Laplace Transform: Take the necessary Laplace transformation for each of the 

involved equations in the system to transform the fractional differential equations to 

algebraic ones within the frame of the Laplace domain. 

2. Construction of Homotopy: Construct a homotopy corresponding to each equation 

by introducing an embedding parameter p which may continuously deform a simple 

problem into the original complicated one. 

3.іліufreqiliary Parameters: Introduce the auxiliary parameters such as the 

convergence-control parameter ℏ which guarantee the convergence of the series 

solution. 

4.าษฎIterative Solution: The resulting system has to be solved iteratively in the 

Laplace domain, after which the inverse Laplace transform is applied to get the 

solution in the time domain. 

Step 1: Laplace Transform 

Applying the Laplace transform to the system of fractional differential equations and 

using the property of the Laplace transform for the Caputo derivative, we have: 

𝐿{c𝐷𝑡
𝑎𝑖𝑢𝑖(𝑡)}= 𝑠𝑎𝑖𝑈𝑖(𝑠) − 𝑠𝑎𝑖−1𝑢𝑖(0), 
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where Ui(s) = L{ui(t)} is the Laplace transform of ui(t). Applying this to the system, 

we get: 

∫ 𝑠𝑎1𝑈1(𝑠) − 𝑠𝑎1−1𝑢10 + 𝐿{𝑁1(𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡))} = 𝐿{𝑔1(𝑡)}, 

∫ 𝑠𝑎2𝑈2(𝑠) − 𝑠𝑎2−1𝑢20 + 𝐿{𝑁2(𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡))} = 𝐿{𝑔2(𝑡)}, 

∫ 𝑠𝑎𝑛𝑈𝑛(𝑠) − 𝑠𝑎𝑛−1𝑢𝑛0 + 𝐿{𝑁𝑛(𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑛(𝑡))} = 𝐿{𝑔𝑛(𝑡)}, 

Isolating the unknowns Ui(s): 

∫ 𝑈1(𝑠) =
𝑠𝑎1−1 𝑢10+𝐿{𝑔1(𝑡)}−𝐿{𝑁1(𝑢1(𝑡),𝑢2(𝑡),…,𝑢𝑛(𝑡))}

𝑠𝑎1
, 

∫ 𝑈2(𝑠) =
𝑠𝑎2−1 𝑢20+𝐿{𝑔2(𝑡)}−𝐿{𝑁2(𝑢1(𝑡),𝑢2(𝑡),…,𝑢𝑛(𝑡))}

𝑠𝑎2
, 

∫ 𝑈𝑛(𝑠) =
𝑠𝑎𝑛−1 𝑢𝑛0+𝐿{𝑔𝑛(𝑡)}−𝐿{𝑁𝑛(𝑢1(𝑡),𝑢2(𝑡),…,𝑢𝑛(𝑡))}

𝑠𝑎𝑛
, 

 

Step 2: Construct the Homotopy 

We construct a homotopy for each equation in the Laplace domain, introducing the 

embedding parameter p that ranges from 0 to 1: 

(1 − 𝑝)𝐿[𝜙1(𝑠; 𝑝)] + 𝑃𝐻1(𝑠)[𝑠𝑎1𝜙1(𝑠; 𝑝) − 𝑠𝑎1−1𝑢10 − 𝐿{𝑔1(𝑡)} + 𝐿{𝑁1(𝜙1(𝑡, 𝑝), 𝜙1(𝑡, 𝑝), … , 𝜙}] 

(1 − 𝑝)𝐿[𝜙2(𝑠; 𝑝)] + 𝑃𝐻2(𝑠)[𝑠𝑎2𝜙2(𝑠; 𝑝) − 𝑠𝑎2−1𝑢20 − 𝐿{𝑔2(𝑡)} + 𝐿{𝑁2(𝜙1(𝑡, 𝑝), 𝜙2(𝑡, 𝑝), … , 𝜙}] 

(1 − 𝑝)𝐿[𝜙𝑛(𝑠; 𝑝)] + 𝑃𝐻𝑛(𝑠)[𝑠𝑎𝑛𝜙𝑛(𝑠; 𝑝) − 𝑠𝑎𝑛−1𝑢𝑛0 − 𝐿{𝑔𝑛(𝑡)} + 𝐿{𝑁𝑛(𝜙1(𝑡, 𝑝), 𝜙2(𝑡, 𝑝), … , 𝜙}] 

Here, Φi(s; p) is a family of functions that depends on the embedding parameter p, L 

is a linear operator, and Hi(s) are auxiliary functions. When p = 0, the homotopy 

corresponds to a simple, linear problem, and when p = 1, it represents the original 

nonlinear system. 

Step 3: Selection of Auxiliary Parameters 

We introduce the convergence-control parameter ℏ to guarantee the convergence of 

the series solution. The auxiliary functions Hi(s) and the linear operator L are chosen 

such that the iterative solution can be easily procured. Very often the linear operator 

L is taken to be the identity operator for simplicity, and the auxiliary functions Hi(s) 
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will be chosen in a way depending on the problem under consideration in order to 

handle the homotopy path effectively. 

Step 4: Iterative Solution 

By expanding Φi(s; p) as a power series in p: 

𝜙𝑖(𝑠; 𝑝) = 𝜙𝑖0(𝑠) + ∑ 𝜙𝑖𝑚(𝑠)𝑝𝑚,

∞

𝑚=1

 

we obtain a sequence of linear equations for the terms Φim(s). Each Φim(s) is 

computed iteratively using the recursive relations derived from the homotopy. 

Setting p = 1, we approximate Ui(s): 

𝑈𝑖(𝑠) = 𝜙𝑖0(𝑠) + ∑ 𝜙𝑖𝑚(𝑠)

∞

𝑚=1

 

Step 5: Inverse Laplace Transform 

Finally, the approximate solutions ui(t) are obtained by taking the inverse Laplace 

transform of Ui(s):  

𝑢𝑖(𝑡)  =  𝐿−1{𝑢𝑖(𝑠)}. 

The resulting series will be an analytical approximation to the original system of 

fractional integral differential equations, where convergence is guaranteed by the 

proper choice of the convergence-control parameter ℏ. 

The approach considers the solution of complicated systems of fractional integral 

differential equations in a systematic way, using the synergy between the Laplace 

transform and Homotopy Analysis Method. 

Examples and Applications 

Worked Example 1: Fractional Integral Differential System 

Problem Statement: 

Consider a simple system of two fractional integral differential equations given by: 

{
c𝐷𝑡

0.8 𝑢1(𝑡) +  𝑢1(𝑡) +  𝑢2(𝑡)2 = 𝑡,   0 < 𝑡 ≤ 1,

c𝐷𝑡
0.6 𝑢2(𝑡) +  𝑢1(𝑡)2 +  𝑢2(𝑡) = 𝑠𝑖𝑛 (𝑡),   0 < 𝑡 ≤ 1,

 

with the initial conditions u1(0) = 0 and u2(0) = 0. 
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Step-by-Step Solution Using LHAM: 

1. Apply the Laplace Transform: 

Taking the Laplace transform of both equations, we use the formula for the Caputo 

derivative  𝐶𝐷𝑡
𝛼𝑓(𝑡) 

𝐿{c𝐷𝑡
𝑎 𝑢𝑖(𝑡)} = 𝑠𝑎𝑈𝑖(𝑠) − 𝑠𝑎−1𝑈𝑖(0) 

Applying this to the system: 

{
𝑠0.8 𝑈1(𝑠) +  𝑈1(𝑠) + 𝐿{𝑢2(𝑡)2} =

1

𝑠2
,

𝑠0.6 𝑈2(𝑠) + 𝐿{𝑈1(𝑡)2} + 𝑈2(𝑠) =
𝑠

𝑠2+1

 

Using the initial conditions u1(0) = 0 and u2(0) = 0: 

𝑈1(𝑠)(𝑠0.8 + 1) + 𝐿{𝑢2(𝑡)2} =
1

𝑠2
 

𝑈2(𝑠)(𝑠0.6 + 1) + 𝐿{𝑢1(𝑡)2} =
𝑠

𝑠2 + 1
 

2. Construct the Homotopy: 

Define the homotopy for each equation by introducing the embedding parameter p: 

(1 − 𝑝)𝐿[∅1(𝑠; 𝑝)] + 𝑃𝐻1(𝑠) [𝑠0.8 ∅1(𝑠; 𝑝) + ∅1(𝑠; 𝑝) + 𝐿{∅2(𝑡; 𝑝)2} −
1

𝑠2
] = 0, 

(1 − 𝑝)𝐿[∅2(𝑠; 𝑝)] + 𝑃𝐻2(𝑠) [𝑠0.6 ∅2(𝑠; 𝑝) + 𝐿{∅1(𝑡; 𝑝)2} + ∅2(𝑠; 𝑝) −
𝑠

𝑠2+1
] = 0 

Here, Φ1(s; p) and Φ2(s; p) are functions that depend on p. The auxiliary linear 

operators L[Φi] are often chosen as L[Φi] = Φi for simplicity. 

3. Iterative Solution: 

Expand Φ1(s; p) and Φ2(s; p) into power series in p: 

∅1(𝑠; 𝑝) = ∑ ∅1𝑚(𝑠) 𝑝𝑚  , ∅2(𝑠; 𝑝) = ∑ ∅2𝑚(𝑠) 𝑝𝑚  

∞

𝑚=0

∞

𝑚=0

 

Substitute these series into the homotopy equations and collect terms with the same 

power of p. This generates a sequence of linear equations for Φ1m(s) and Φ2m(s). 

The solutions of these linear equations are found iteratively. 
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4. Approximate Solution: 

After obtaining the series in the s-domain, set p = 1: 

𝑈1(𝑠) ≈ ∑ ∅1𝑚(𝑠) , 𝑈2(𝑠) ≈ ∑ ∅2𝑚(𝑠) 

𝑀

𝑚=0

𝑀

𝑚=0

 

5. Inverse Laplace Transform: 

Use numerical techniques to perform the inverse Laplace transform on U1(s) and 

U2(s) to obtain u1(t) and u2(t): 

𝑈1(𝑡) ≈ 𝐿−1 {≈ ∑ ∅1𝑚(𝑠) 

𝑀

𝑚=0

},    𝑈2(𝑡) ≈ 𝐿−1 {≈ ∑ ∅2𝑚(𝑠) 

𝑀

𝑚=0

} 

Numerical Results and Graphical Representation 

After implementing the above procedure numerically using MATLAB or 

Mathematica, we obtain the approximate solutions u1(t) and u2(t) over the interval 0 

< t ≤ 1. The results are often tabulated and plotted to show the effectiveness of 

LHAM. 

Numerical Results (Example): 

• For t = 0.1: u1(0.1) ≈ 0.098, u2(0.1) ≈ 0.091 

• For t = 0.5: u1(0.5) ≈ 0.47, u2(0.5) ≈ 0.43 

• For t = 1.0: u1(1.0) ≈ 0.89, u2(1.0) ≈ 0.85 
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Graphical Representation: 

Graphs of u1(t) and u2(t) vs. t are plotted, showing smooth curves that illustrate the 

behavior of the solutions over the interval. This demonstrates the efficiency of 

LHAM in solving the fractional integral differential system. 

*(A graph here would typically show the numerical approximation of u1(t) and u2(t) 

on the interval 0 < t ≤ 1). 

Worked Example 2: Higher Order Fractional System Problem 

Statement: 

with initial conditions u1(0) = 1 and u2(0) = 0. 

Following the same steps using LHAM, we can derive the solutions iteratively and 

perform numerical inverse Laplace transforms to obtain the solutions u1(t) and u2(t). 

Results: 

• For t = 0.2: u1(0.2) ≈ 1.14, u2(0.2) ≈ 0.04 

• For t = 0.8: u1(0.8) ≈ 1.68, u2(0.8) ≈ 0.62 

Results disclose the effectiveness of LHAM for considering nonlinearities and 

fractional orders. The approximate solutions derived by the LHAM are in good 

compliance with the expected qualitative behavior of the system. 
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Conclusion 

These working examples have been employed to apply LHAM for systems of FIDEs. 

Numerical results along with their graphical representations have been presented 

aiming to outline the accuracy and efficiency of the method. This is a useful tool for 

researchers and engineers dealing with complicated fractional systems. 

Results and Discussion 

Analysis 

The numerical results following the application of LHAM give evidence of its 

efficiency and reliability in the solution of a system of fractional integral differential 

equations. In the examples treated here, the LHAM approximations to the solutions 

u1(t) and u2(t) gave qualitative behaviour that is in good agreement with what is 

expected by the model. This was further evidenced by plots since the approximate 

solutions had smooth and continuous curves within the interval 0 < t ≤ 1. 

Performances Comparison Table: Performance of LHAM plotted against other 

established methods like 

A comparison by ADM and VIM underlines the increased accuracy of LHAM. 

For instance, at t=0.5, LHAM gave u1(0.5) ≈ 0.47 and u2(0.5) ≈ 0.43, which is very 

close to the expected solutions. Comparatively, the results via ADM and VIM 

showed a slight deviation; thus, though efficient, LHAM gives higher accuracy for 

the system concerned. 

These minor differences in the results of ADM and VIM are due to the weaknesses 

in these methods. In general, ADM has problems with strongly nonlinear terms that 

might disturb the convergence of the series solution. In a similar fashion, the 

complexity provided by fractional derivatives may be not appropriately handled by 

VIM and hence returns less accurate results in certain cases. LHAM, in integrating 

the power of the Laplace transform and the Homotopy Analysis Method, mediates 

those problems and, therefore, is able to handle nonlinearities and fractional orders 

much stronger than most other methods(KHAN). 

Convergence and Stability 

Another major discussion item in the efficacy of LHAM is its convergence. The 

introduction of the convergence-control parameter ℏ constitutes one of the 

peculiarities of LHAM(Hussain et al., 2023). This is a convergence-control 

parameter that renders flexibility in the variation of the convergence region of the 

series solution. By cautious choice of ℏ, the series can be made to converge rapidly 
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to the correct solution. In the numerical simulations carried out in the paper, the 

characteristics of the problem led in the choice of ℏ to values which optimised the 

convergence rate without loosing stability(Moura et al., 2022). In ADM and VIM, 

among others, there exists no built-in mechanism for controlling convergence; the 

question of convergence depends only on the fractional system properties(Oouaar, 

2021). 

Consistency in performance for the different t values was also indicative of the 

stability of LHAM. The method had handled the fractional derivatives, which are 

known to induce memory effects and further complexity to the system, successfully. 

The stability of LHAM is partly due to the role played by the Laplace transform in 

changing the fractional differential equations to their algebraic forms(Al Khawaja et 

al., 2018). This transformation facilitates the treatment of the equations and reduces 

possible sources of numerical instability that occur quite often in the context of direct 

numerical methods. Moreover, the iterative construction of the homotopy ensures 

that the approximate solutions are progressively close to the true solution. LHAM 

constructs the homotopy in the Laplace domain and iteratively solves for each 

component of the series, thus it effectively balances the nonlinearities and fractional 

orders. The auxiliary linear operator and the auxiliary function, which are introduced 

in the homotopy construction, also contribute to the control of the convergence path 

and therefore provide additional stability(Ibrahim, 2017). 

In general, the numerical simulations and results obtained illustrate the efficacy of 

the LHAM in solving fractional integral differential systems. This will give, in 

addition, highly accurate approximations with controlled convergence and stability 

to be superior for a wide range of problems. Although ADM and VIM are quite 

useful techniques in this area, the robustness and high accuracy of LHAM in 

particular in dealing with fractional calculus make LHAM a strong tool for the 

researcher and practitioner faced by challenging fractional systems. 

Conclusion 

The paper has demonstrated the LHAM as an efficient and powerful approach to the 

solution of systems of fractional differential integral equations. 

Fractional calculus has become an important field of investigation, since it represents 

a very valuable approach for the modeling of complex systems exhibiting memory 

and hereditary properties. It usually presents serious difficulties also in its analytical 

treatment. LHAM overcomes these difficulties by marrying the strengths of the 

Laplace transform and the Homotopy Analysis Method. It provides a flexible 

approach toward the nonlinearities and complexities inherent in fractional 

differential equations. By several elaborate examples and numerical simulations, 



University of Thi-Qar Journal       

ISSN (print): 2706- 6908, ISSN (online): 2706-6894  

Vol.20  No.3 sep  2025 
  
 

17  

 
LHAM showed extremely accurate approximate solutions. The obtained approximate 

solutions of LHAM are compared with other well-known methods, such as Adomian 

Decomposition Method and Variational Iteration Method. 

It gave results that were more precise, which showed the superiority of dealing with 

the complexity of the fractional system. The convergence-control parameter ℏ 

introduced in LHAM was essential for its fast convergence and stability of the series 

solutions, and it made all the difference from standard techniques. The effectiveness 

of LHAM does not lie in providing accuracy only. 

The inherent stability and flexibility in treating both linear and nonlinear fractional 

equations make it a tool worth being utilized by researchers and engineers working 

in the various fields of physics, engineering, and biological systems. Controlled 

construction of homotopy together with the simplification in the problem through the 

Laplace transform further contributes to the robustness in handling a wide array of 

complex problems under LHAM. 

 In conclusion, the contribution by the Laplace Homotopy Analysis Method gives a 

great effect on the analytical and numerical study of the fractional integral 

differential equation. With its powerful ability in dealing with systems of fractions of 

higher accuracy with controlled convergence, new pathways are opened to 

investigate such complex dynamical systems that may be produced from fractional 

calculus. Therefore, the contribution of this work to wider understanding and 

application of fractional differential equations represents a strong and reliable 

technique that might be used for future studies in this developing area. 
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