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Abstract  

 

This work presents a numerical technique for simulating free surface with and without 

bottom obstacles. The numerical method solves the governing equations using the finite difference 

method on a staggered grid and uses numerical computations for the analysis of Dam-Break Flow 

using two-dimensional flow equations in a vertical plane. The numerical model uses the general 

approach of the simplified marker and cell method combined with the volume of fluid approach for 

the surface tracking. 

The variable models were based on a computational fluid dynamics technique, called the 

SOLA-VOF scheme, which possesses the capability of treating transient fluid flow problems with 

evolution of free boundaries. 

 

 

 الملخص 

حلت  الطريقةُ العدديةُ  .ةسفليال حواجزالوعدم وجود بوجود  الحرِ  السطحتدفقِ عددي لمحاكاة تكنيك  هذا العملِ يقُدمُّ 

، ثنائي السدِّ نهيار عدديةَ لتحليلِ تدفقِ إالحساباتَ الت طبقوللشبكة التراكبية المحدودةِ  الفروقطريقةَ  باستخدام َالمعادلاتُ الحَاكِمةُ 

المندمجة او المتركبة مع المُبسََّطةِ والخلية لعلامةِ اطريقة العامّ ل سلو الا ،النموذجُ العدديُ  استعمل ُ. مستوي عمودي فيالبعد 

 .للتتبع السطحيِ اسلو  او طريقة حجم السائل 

، الذي يمَتلكُ قابليةَ مُعاَلجََة  SOLA-VOF، المسمى ديناميكا السوائلالحسابي ل على اساس التكنيك اعتمدت تالموديلا

 .حرةتطورِ الحدودِ المع عابرةِ السائلةِ التدفقِ المشاكلِ 

 

 

 

 

 

 

 

Introduction  

 

One of the important subjects that have been considered by fluid mechanics researchers is 

studying the interfacial flows. Theoretical studies of two phase viscous flows involving free surface 

instabilities or very strong interface tearing and stretching are difficult to perform. Numerical 

methods have begun to be used to simulate the flow dynamics of the problem. The numerical 

methods can be divided into two groups depending on the type of grids used: moving grid or fixed 
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grid, Renardy Y. and M. Renardy (2002) and Gerlach, D. et al. (2006). Two important approaches 

of fixed-grid methods, namely the volume-of-fluid and the level-set approaches, are among the 

most commonly used methods. The volume-of-fluid method, Renardy Y. and M. Renardy (2002), 

tracks the volume of each fluid in all cells containing portions of the interface, rather than the 

interface itself. The VOF method solves a non-diffusive solution of the advection equation, by a 

geometrically based calculation technique of the void fraction fluxes at the cell faces based on the 

reconstructed interface.  

The objectives of the present study are to use the VOF based numerical method that we have 

recently developed for calculating interface of the two fluids.  The major incentive for using the 

VOF method is that the types of problems that can be solved involve highly complex free surface 

flows. Reasonable accuracy is attainable and yet the method is relatively simply implemented. The 

basic algorithm is available in a two-fluid code called SOLA-VOF and part of our work has been 

devoted to modifying this algorithm to adapt it to the problems of interest, which involve transient 

free surface flows with two immiscible fluids. 

The purpose in the present study was to investigate the dam-break flow numerically with 

and without bottom obstacles in the tank. 

 

 

Governing Equations 

 

The mass, momentum and energy conservation equations that govern fluid flow can be 

expressed in vector calculus notation, as it follows: 

a) Mass conservation equation (continuity) for incompressible fluids, Zohdi T. (2007): 

0



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 

t         
… … … (1) 

and if  is assumed to be constant then  
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b) The momentum conservation equation (Navier–Stokes) can be expressed as Zohdi T. (2007): 
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and if fluid viscosity and density were assumed constant, in x-direction Eq. (3) can be simplified to 
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and in y-direction 
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Two dimensional flow is assumed in either plane geometry (x,y) or cylindrical geometry (r,z). 

The parameter value 0  is the setting for the plane case, while 1 is the setting for cylindrical 

coordinates (i.e., axisymmetric flow). 

 

Volume of Fluid Method (VOF) 

 

Many reconstruction algorithms use the fraction of cell volume occupied by one of the fluids 

as the marker quantity. If this fraction is 0 for a given cell, the fluid does not occupy the cell and 

there is no interface in that cell. Conversely, if die fraction is 1, the cell is completely occupied by 

the fluid and again there is no interface present. An interface is to be constructed only if the fraction 

is between 0 and 1. Since there is only one piece of information regarding the interface per cell 
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available, certain arbitrariness is reconstructing the shape of the interface has to be allowed. The 

accuracy with which the reconstructed interfaces approximate the real interface is difficult to judge 

and different types of distortions are possible (Ban and Ashurst, 1984). The VOF method of Hirt, C. 

W. and Nichols, B. D., (1981) defined a function F(x,y.t) that is equal to unity at any point occupied 

by fluid and zero elsewhere. When averaged over the cells of a computational mesh, the average 

value of F in a cell is equal to the fractional volume of the cell occupied by fluid. In particular, a 

unit value of F corresponds to a cell full of fluid, whereas a zero value indicates that the cell 

contains no fluid. Cells with F values between zero and one contain a tree surface (Fig.1). The VOF 

method requires only one storage for each mesh cell, which is consistent with the storage 

requirements for all other dependent variables. 

In addition to defining which cells contain a boundary, the F function can be used to define 

where fluid is located in a boundary cell. The normal direction to the boundary lies in the direction 

in which the value of F changes most rapidly. 

The time dependence of F is governed by the equation, 

0
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
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y

F
v

x
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u

t

F
        … … …  (6) 

 

 

 

 

 

 

 

 

 

 

Figure 1: Numerical methods for volume-of-fluid method 

 

Computational Treatment 

 

The computational treatment of the governing equations is documented based on the SOLA-

VOF algorithm. We use an Eulerian mesh of rectangular cells having variable sizes, ix  for the ith 

column and jy  for the jth row, as shown in Fig. 2. The governing and boundary equations are 

discretized by using a finite difference scheme on a staggered grid.  

The computational mesh is a two-dimensional orthogonal mesh representing either Cartesian 

or cylindrical coordinates. For simplicity in the form of the equations, the cylindrical coordinate 

system is modified to use x=r, y=rmax Ө and z=z as the mapping between the coordinate systems 

with the terms in the continuity equation, the Navier–Stokes equation, and the F-convection 

equation modified accordingly. 

Solution is accomplished on a "staggered" grid where scalar quantities, such as the 

"fullness" function, F, and the pressure, p, are located at the computational cell centers and vector 

components such as the velocity components u and v are located on the cell faces as shown in Fig. 3 

for a two-dimensional mesh.  
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Figure 2: A finite difference mesh with variable rectangular cells. 

 

 

 

Figure 3: Diagram of a two-dimensional computational cell. 

 

 

 

 

Finite-difference approximations to momentum conservation equations 

  

A standard finite-difference approximation to Eqs. (4) and (5) in MAC-type methods is 

expressed as: 
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Following Hirt, C. W. and Nichols, B. D., (1981), the convective terms in Eqs. (7) and (8) are 

discretized using a combination of first-order donor-cell and centered-difference approximations. 

The expression for FUX is then given by  
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,2/1 sgn   … … … (9)                      

where 
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When α=0, expression (9) reduces to the second- order accurate centered-difference approximation. 

For α=1, the first-order donor-cell form is recovered. The expressions for FUY is given by  
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Likewise, the approximations for the convective accelerations in the y- 
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Thus, according to Lemos (1994), the following discretization of the viscous term in Eqs. (7) 

and (8) was adopted:  
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Finite-difference approximations to continuity equation  

 

Velocities computed from Eqs. (7) and (8) in general will not satisfy the continuity equation 

because p
n+1

 is not available. To satisfy the continuity equation and to determine the correct 

pressure, values of pressures and velocities must be adjusted in each cell that is occupied by fluid. 

In a full cell, pressure is changed in such a way that the divergence Di,j left by the first step is driven 

to zero, in a free-surface cell, the cell pressure may be determined in such a way that a linear 

interpolation between the pressure in the surface and adjacent full cell yields the wanted value ps 

(usually zero) at the free-surface location. In both cases, the velocities located on the sides of the 

https://jutq.utq.edu.iq/index.php/main


University of Thi-Qar Journal Vol.10 No.3 SEP 2015 
Web Site: https://jutq.utq.edu.iq/index.php/main   Email: journal@jutq.utq.edu.iq  

118 

 

cell are simultaneously adjusted, in response to the pressure change in the cell.  

The pressure in a full cell is split into an old time-level component and a correction such that 
n
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Then we can work out the pressure derivatives: 
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Substituting these in the momentum equations gives: 
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Let us define the following quantities: 
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Then the momentum equations are written as: 
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The iterative method starts with calculating a first estimate of the velocities with a fully 

explicit guess ( Δp
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For an improved guess the pressure correction Δp
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Substitute these into the continuity equation. Then, a form of Poisson equation results: 
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This equation can be solved for Δp
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 . For this purpose we used finite differences taking into 

consideration the variable mesh to obtain: 
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The pressure correction Δp
(2) 

is now computed from the requirement 0)2(

, jiD  such that 
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Convergence of Eq. (25), which is a variant of the Newton-Raphson relaxation technique, can 

be accelerated if 
)1(

, jiD  is multiplied by an over-relaxation factor ω such that 1 ≤ω≤ 2 . An optimum 

value of ω is often equal to 1.7; an unstable iteration results if ω exceeds 2.  

In order to deal with a free surface, we need an additional procedure because the location of 

the free surface is unknown a priori. The procedure adopted herein is described in brief as follows 

(refer to Fig. 4). The surface cell pressure jip ,  may be determined by a linear interpolation (or 

extrapolation) between the surface pressure, sp , and pressure, Np , inside the fluid. Namely,   

  sN

n

ji ppp   11

,               … … … (26) 

where ζ= dc/d is the ratio of the distance between the cell centers to the distance between the free 

surface and the center of the neighbor interpolation cell. When the surface tension effect is 

neglected, p
s
 can be set zero. Equation (25) can be used to compute the pressure correction for a 

surface cell, provided S is replaced by  

  jisN pppS ,1                … … … (27) 

After the pressure correction is found from Eq. (25), neighbor velocities are updated using 

Eqs. (22) and (23). The pressure correction is always computed using the most up-to-date velocities. 
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Figure 4: Sketch for pressure interpolation procedure 
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In summary, the procedure of pressure iteration can be stated as follows (refer to Fig 5). The 

correction of pressure is calculated from either Eq. (25) for full cells or from Eq. (27) for free 

surface cells. The corrected pressure is then obtained from Eq. (28). The velocities compatible with 

the new corrected pressure are obtained from Eqs. (29) and (30). This process is done iteratively 

until the D
i,j 

term becomes sufficiently small such that the velocity field is in required accuracy.  

 

 
Figure 5: Flowchart of pressure-velocity iteration 

 

Approximations for volume of fluid function 

 

The divergence equation for F (eq. 6) can be finite differenced for the advection term in the x-

direction in terms of an upstream donor (d) cell at (id, j) and a downstream acceptor (a) cell at (ia,j) 

(if 01

, n

jiu ), idm = i −1, id = i, ia = i +1, otherwise, ia = i, id = i +1, idm = i + 2 : 
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Here the amount of F fluxed across the cell face in Δt is: 
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n

jijiad xFCFtuFFut  

 ,

1

,2/1, ,min           … … … (33) 

with the correction factor: 
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In these expressions, superscript a denotes the acceptor cell, subscript d denotes the donor 

cell, and double subscript ad corresponds to either a or d depending on the surface orientation. 

Double subscript dm denotes the upstream of the donor cell and Δxid stands for the width of the 

donor cell. The operator min in Eq. (33) prevents the fluxing of more F from the donor cell than it 

has to give, while the operator max in Eq. (34) accounts for an additional F flux, CFx, if the amount 

of void (1-F) to be fluxed exceeds the amount of void available in the donor cell. Fig. 6 provides a 

pictorial explanation of Eq. (33), where the shaded region represents the amount of fluid in each cell 

and the striped region represents the amount of fluid to be fluxed. The donor and acceptor cells are 

defined in Fig. 6a for fluxing across a vertical cell face.  

Following Nichols, B. D., and Hirt, C. W., (1981), the rules for choosing ad = a or ad = d are 

the following. When ad = d, the flux is an ordinary donor-cell value, VFF d  , in which the F 

value in the donor cell is used to define the fractional area of the cell face fluxing, as shown in Fig. 

6b. When ad = a, the value of F in the acceptor cell is used to define the fractional area of the cell 

face across which fluid is flowing. In case (c) of Fig. 6, all the fluid in the donor cell is fluxed 

because everything lying between the dashed line and the flux boundary moves into the acceptor 

cell. In case (d) of Fig. 6, more fluid than the amount VFF a  , must be fluxed, the extra fluid 

between the dashed line and the flux boundary is equal to the CFx value in Eq. (33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Examples of free-surface shapes used in the advection of F 

 

Mesh boundary conditions 

 

At the mesh boundaries, several types of boundary conditions may be imposed using the layer of 

the fictitious cells that surround the mesh. The built-in types 

of boundary conditions are as follows: free-slip, no-slip, continuative and constant pressure 

boundary conditions. Consider a left boundary, for instance, as illustrated in Fig. 8. If this is a rigid 

free-slip wall, then the normal velocity and the gradient of the tangential velocity are both set zero. 

Namely, 
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If the left boundary is a rigid no-slip wall, then both of the normal and tangential velocities are set 

to zero, Fig.8. That is to say,  
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For a continuative or outflow boundary, a prescription is needed so that the fluid may flow out of 

the domain computation. The continuative boundary conditions imposed at the left wall are 

expressed as 
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(a) free-slip rigid wall                                             (b) no-slip rigid wall 

Figure 8: Principle sketch of the “free-slip rigid wall and no-slip rigid wall”  boundary condition for 

calculating the variables u, v, p and F cell (i, j)           (indicated by white arrow and white ball). 

 

Free-Surface Construction 

 

For the accurate application of boundary conditions, the free-surface of the fluid has to be 

constructed at each time level. In the Volume-of-Fluid (VOF) technique, it is assumed that the 

boundary can be approximated by a straight line cutting through the cell. By first determining the 

slope of this line, it can then be moved across the cell to a position that intersects the known amount 

of F volume in the cell. 

To determine the boundary slope, it must be recognized that the boundary can be represented 

either as a single-valued function Y(x )  or as X (y ) ,  depending on its orientation. To accomplish 

this in a cell (i,j), eight cells surrounding it should be considered, i.e., the computational molecule 

consists of nine adjacent cells (3x3) as shown in Fig. 9. A good approximation to Y(x )  is 

      11,,1,  jjji yjiFyjiFyjiFY           … … … (38) 

where Y = 0 is taken as the bottom edge of the j-1 row of the molecule. Y i + l  and Y i - l  are similarly 

obtained. Then 
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where    2/1 iii xxx  . Similarly, X(y )  may be approximated by 

      11 ,1,,1   iiij xjiFxjiFxjiFX            … … … (40) 

where X = 0 is taken as the left edge of the i -1 column of the molecule. Having evaluated 1jX  

and 1jX similarly, we can write 
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where   2/1 jjj yyy    

 

The free-surface orientation in an (i,j) cell can be determined by comparing the absolute 

values of the above two derivatives. The derivative with the smallest magnitude gives the best 

approximation to the slope of the free-surface because the corresponding Y  or X approximation is 

more accurate in that case. Therefore, if \ dY / dx \  is smaller than \ dX /dy \ ,  the boundary is more 

nearly horizontal than vertical; otherwise it is more nearly vertical. 

The values of the above derivatives may also be used to find out where the fluid exists in a 

free-surface cell. Suppose \ dY / dx \  is smallest so the interface is more horizontal than vertical. If 

dX/ dy  is negative, F fluid lies below the boundary, and cell (i,j-1) is used as the neighboring 

interpolation cell for the surface cell in the free-surface pressure difference equation, Eq. (27). Had 

dX/ dy  been positive, cell (i,j+ 1) would be chosen for the neighboring interpolation cell because 

fluid would then be above the boundary. 

Once the boundary slope and the side occupied by fluid have been determined, a line can be 

constructed in the cell with the correct amount of F volume lying on the F fluid side. This line is 

used as an approximation to the actual boundary and provides the information necessary to calculate 

  for the application of the free-surface pressure difference equation, Eq. (27). 

 

 
Figure 9: Computational molecule to construct free-surface in ( i . j )  cell 

 

 

Free-Surface Boundaries 

 

There are three sets of boundary conditions at the free surface: surface tension effects, liquid-

solid contact line conditions, and specifications of velocities at and outside the interface. 

Surface Tension: Two essential steps are needed to include surface tension effects in a 

calculation. First, it is necessary to compute a local curvature, J, in each free-surface cell using 
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Y(x )  or X ( y )  definitions from Eqs. (38) and (40), so that a surface tension pressure, Ps , can be 

evaluated. Once the curvature J is found, this surface tension pressure is calculate and given by 

JPs               … … … (42) 

Second, it is necessary to impose this surface force on all interfaces based on the pressure 

relation for the free-surface ceils, Eq. (27). 

In the first step, J is given by 

cylxy

cylxy
RR

JJJ
11

          … … … (43) 

where xyR is the principal radius of curvature in the x - y  plane and cylR  is the principal radius of 

curvature associated with the azimuthal direction. 

To evaluate xyJ  we use the following equation if the interface is mostly horizontal 
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Figure 10: Cylinderical curvature, cylJ . 

 

When the interface is mostly vertical, the roles of  x  and у  must be reversed with X(y )  

replacing Y(x ) .  

To evaluate cylJ , first we calculate the angle   which is the angle between the interface 

tangent and the positive x  axis when the interface is horizontal. If the interface is vertical,   is the 

angle it makes with the positive у  axis. For the near horizontal case, as shown in Fig. 10(a), then we 

may write 

 dxdY /arctan               … … … (45) 

icyl

cyl
xR

J
sin1

                           … … … (46) 

For the near vertical case, Fig. 10(b), we have 

 dydX /arctan               … … … (47) 

icyl

cyl
xR

J
cos1

         … … … (48) 

 

Liquid-Solid Contact Line: The liquid-solid contact line needs special attention. We in-

corporate the concept of contact angle, , in the free surface boundary condition, Eq. (42).   is the 
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angle between the solid wall and the fluid interface that includes the fluid;   is assumed to be 

known. To impose this angle condition we adjust the Y(x )  and X(y )  values at the wall. For 

example, consider the boundary cell (i,j) as shown in Figs. 11(a) and 11(b) with fluid assumed to be 

below the boundary. The surface tension pressure, Ps, will be calculated in the same manner as 

outlined before based on Eq. (42), except that the surface is assumed to make an angle,  , with the 

wall by adjusting the i+1 value of Y(x )  and the j+1 value of X(y )  as 

 

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 ii

ii

xx
YY          … … … (49) 

and 
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 ii

ij

yy
XX          … … … (50) 

Similar adjustments are made to the appropriate variables for all other orientations of walls 

and interfaces. The above equations are used when calculating the mean curvature, J, of the liquid 

meniscus near the solid wall as was explained previously. It should be mentioned that the contact 

angle might have different values for different solid walls of the computational domain. In addition, 

the contact angle may be a dynamic contact angle that varies with time in which case it has to be 

updated after each time step. 

Interface Velocities Specification: Velocities immediately outside a free surface must be 

specified at each time step because their values are needed in the finite-difference approximation for 

points outside the surface. Velocities are set on every cell boundary between a surface cell and an 

empty cell. If the surface cell has only one neighboring empty cell, the boundary velocity is set to 

insure the vanishing of equation, the velocity divergence defined in Eq. (2). When there are two or 

more empty cell neighbors, the individual contributions to the divergence,   xxu  /21 and y / ,  

are separately set to zero. In addition, we have to set the velocities on boundaries between empty 

cells adjacent to a surface cell. This is accomplished by setting zero values for yu  /  and x / .  

i.e., no tangential stresses at the free-surface boundaries. 

 

 

 
Figure 11: Liquid-solid contact line condition. 

 

Initial Conditions 

 

At the beginning of the first step of the computation, the initial values of volume-of-fluid 

function,
0

,

n

jiF ,  and the initial velocity distributions within the fluid must be given. When setting the 
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values of 
0

,

n

jiF  for free-surface cells, first we need to find where a cell is cut by the fluid free-

surface. Assuming a straight line for the cut through the cell, then the area of the cell occupied by 

the fluid can be calculated as shown in Fig. 12. Now for the cells for which 00

, n

jiF  the x-direction 

velocity, 
0

,

n

jiu , is set to zero, and 

0

0

, Vn

ji             … … … (51) 

where 0V is the droplet impact velocity. 
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Figure 12: Calculation of the initial F values for free-surface cells. 

 

Numerical Stability 

 

Numerical calculations often have computed quantities that develop large, high-frequency 

oscillations in space, time, or both. This behavior is usually referred to as a numerical instability; 

especially if the physical problem being studied is know not to have unstable solutions. When the 

physical problem does have unstable solutions and if the calculated results exhibit significant 

variations over distances comparable to a cell width or over times comparable to the time 

increment, the accuracy of the results cannot be relied on. To prevent this type of numerical 

instability or inaccuracy certain restrictions must be observed in defining the mesh increments ix  

and 
jy , the time increment t , and the upstream differencing parameter  . 

The mesh increments should be chosen small enough to resolve the expected spatial variations 

in all dependent variables. When this is impossible because of limitations imposed by computing 

time or memory requirements, special care must be exercised in interpreting calculation results. For 

example, when computing the flow in a large chamber, it is usually impossible to resolve thin 

boundary layers along the confining walls. In many applications, however, the presence of thin 

boundary layers is unimportant and free-slip boundary conditions can be justified as a good 

approximation. 

Once a mesh has been chosen, the choice of the time increment necessary for stability is 

governed by several restrictions. First, material cannot move through more than one cell in one time 

step because the difference equations assume fluxes only between adjacent cells. Therefore, the 

time increment must satisfy the inequality, 
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where the minimum is with respect to every cell in the mesh. Typically, t  is chosen equal to one-

fourth to one-third of the minimum cell transit time. Second, when a nonzero value of kinematic 

viscosity is used, momentum must not diffuse more than approximately one cell in one time step. A 

linear stability analysis shows that this limitation implies 
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Third, when surface tension is included there must also be a limit on t  to prevent capillary 

waves from traveling more than one cell width in one time step. A rough estimate for this stability 

condition is 

 CYL

x
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14

3
2 

           … … … (54) 

where m  is the minimum of F  and C , mx  is the minimum cell size in the mesh (either x  or 

y ), and CYL is 1.0 for cylindrical geometry and 0.0 for the Cartesian case. Finally, with t  

chosen to satisfy the above inequalities, the last parameter needed to insure numerical stability is 
 . The proper choice for   is 
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As a rule of thumb, an   approximately 1.2 to 1.5 times larger than the right-hand member of 

the last inequality is a good choice. If   is too large, an unnecessary amount of numerical 

smoothing (diffusion-like truncation errors) may be introduced. 

 

1. The Broken Dam Test 

 

It is desired to analyze the motion of water within a basin. Initially, the basin contains a 

dam, and the water is confined by the dam as shown. At the start of the analysis, the dam is 

removed and the water flows into the rest of the basin, Figure (13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Dam break physical setup 
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Figure 14: Time evolution of the dam break flow. (a)=0.0s, (b)=0.1s, (c)=.0.2s, (d)=0.4s, (e)=0.6s, 

(f)=0.8s, (g)=0.9s, (h)=1.0s 

 

(a)=0.0s          (e)=0.6s 

 

(b)=0.1s          (f)=0.8s 

 

(c)=0.2s          (g)=0.9s 

 

(d)=0.4s          (h)=1.0s 
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Figure15: Experimental results of a collapsing water column (Koshizuka et al. (1995)) 
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(a)=0.0s        (b)=0.2s 

 

(c)=0.4s       (d)=0.6s 

 

(e)=0.8s       (f)=1.0s 
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Figure 16 (a) and (b): Predicted and measured time histories of waterfront        location and water 

column height in dam-break problem. 

 

Numerical Results and Discussion 

 

The results displayed in Fig. 14 are part of a movie sequence obtained from the results of the 

run of the dam break flow from time t=0.0s to t=1.0s. At time t=0.0s, the water column was allowed 

to flow. A relatively high velocity and shallow water depth flew in the x-direction quickly formed 

(e.g. t=0.2s). As time progressed, the flow impacted on the vertical wall at the opposite side of the 

tank. An upward water jet was suddenly formed that rose until gravity overcame the upward 

momentum (before at t=0.6s). At this moment, the jet became thicker and the flow started to 

reverse. We note that the water leaves the tank when it is time =0.6s. The momentum carries part of 

the fluid along the vertical wall up to the height of the square cavity.  

Due to the oncoming flow, an adverse momentum gradient was created that resulted in an 

overturning wave (t= 0.6s and t=0.8s). This wave formation continued until the wave tip 

reconnected with the incident shallow water flow that now had less forward momentum. A sudden  

 

 

 

rise in pressure occurred at the reconnection point that was of the same order of magnitude 

as the pressure on the impact wall. This was due to the existence of high relative momentum 

between the fluid at the wave tip and the free-surface just before the attachment (note at time 

t=0.8s). At this stage, the flow became complicated as several big and small pockets of entrained air 

were created due to the first and subsequent impacts on the free-surface.  

Gravity (i.e. g=9.81 m/s
2
) caused the water column on the left of the reservoir to seek the 

lowest possible level of potential energy (Figs 2a-h). Thus, the water column would collapse and 

eventually come to rest. The initial stages of the flow were dominated by inertia forces with viscous 

effects increasing as the water came to rest.  

The height of the collapsing water column decreased rapidly as time increased (Fig. 2a). The 

leading edge of the collapsing water column increased as time increased (Fig. 2c). At time t=0.2s; 

approximate 75% of the base is covered with water, while at time t=0.4s; the horizontal interface 

makes a small angle with the base of the tank and the water starts to leave the domain at the top 

right corner. At times t=0.6s and t=0.8s; the horizontal interface is almost parallel to the base of the 

tank and the water against the right wall starts to fall back under the influence of gravity. At times 

t=0.8s and t=0.9s; the backward moving wave has folded over and a small amount of air is trapped. 

L1 
y 
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A returning wave is then formed as the fluid momentum is lost and gravity effects takes over 

forcing the fluid along the vertical right wall to move back down. Finally at time t=1.0s; the tongue 

of the backward moving wave impinges upon the left wall, trapping a small air bubble in middle 

and large bubble attached to the left wall . 

Results presented and available from the experiment and computing results by other 

researchers show the same tendency in references (Koshizuka et al. (1995), Fig. 15, Koshizuka et 

al. (2000), Zima, P. (2005) , Kocaman S. (2007) and Denys et al. (2009) and M. Dimitrios (2009)) 

Comparisons with our numerical results, see Fig. 14 and Fig. 15. The results from the simulation 

were in good agreement with the experimental results for Koshizuka et al. (1995). 

The time histories of the waterfront location and water column height are shown in Fig. 16. 

The computing and experimental results are shown on the normalized time ( LgtTn /2 ) 

background.  

 

 

 

 

 

Figure 17: Time evolution of the dam break flow with obstacle. (a)=0.0s, (b)=0.3s, (c)=.0.6s, 

(d)=0.9s 

Fig. 17 shows time evolution of the dam break flow with obstacle in the one side.  

When the plate is lifted, a very complex flow pattern developed due to the presence of the obstacle, 

the water flows rapidly into the tank  and reaches the obstacle after approximately 6 s (Fig. 17c). 

There, the water reflects against the wall, a bore forms and begins to travel in the upstream 

direction, back towards upstream direction while the other part moves up the bump. Velocities 

become minimum just behind the bump and velocities of the negative wave front travelling towards 

upstream direction increase. Also recirculation zones can appear near the obstacle. 

 

 

(a)t=0.0s          (b)t=0.3s 

 

(c)t=0.6s          (d)t=0.9s 
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Figure 18: Time evolution of the dam break flow, water column in the center of the tank. (a)=0.0s, 

(b)=0.3s, (c)=.0.6s, (d)=0.9s 

 

 

 

 

 

 

 

 

(a)t=0.0s          (b)t=0.3s 

 

(c)t=0.6s          (d)t=0.9s 
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Figure 19: Time evolution of the dam break flow, water column in the center of the tank and with 

obstacles in the two sides. (a)=0.0s, (b)=0.3s, (c)=.0.6s, (d)=0.9s 

 

Fig. 18 and 19 show also time evolution of the dam break flow without and with obstacles in the 

two sides and water column in the center of the tank. When the plate is lifted from two sides, also 

can be shown a very complex flow pattern developed due to the presence of the obstacle, the water 

flows rapidly into the tank and reaches to end of the tank in 6s (Fig. 18c) and reaches to the obstacle 

after approximately 3s (Fig. 19b). Without obstacle, the direction of the flow will be to the ends of 

the tank and stabilize the flow of water quickly while with two obstacles, can be seed the same 

results obtained previously (Fig.17), water reflects against the wall, and a bore forms and begins to 

travel in the upstream direction, back towards upstream direction while the other part moves up the 

bump and rise to the top. 

 

 

 

 

 

(a)t=0.0s          (b)t=0.3s 

 

(c)t=0.6s          (d)t=0.9s 
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Conclusion  

 

The Volume of Fluid (VOF) technique is a convenient and powerful tool for modelling fluid 

flows which contain a free surface. Under the VOF method, fluid location is recorded using a 

volume of fluid function.  It is particularly useful because it uses a minimum of stored information, 

treats intersecting free boundaries automatically. The VOF technique was described in detail as it 

has been used to follow free surfaces in an incompressible hydrodynamics code.  
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