ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Glyphosate and Autoimmune Disease

Samaa Faez Khudhur

Faculty of science, University of Thi-Qar, Iraq.

Department of Pathological Analysis

samaa.faez@sci.utq.edu.iq

Abstract

N-phospho methyl (glycine), another name for glyphosate, is an organophosphorus chemical that competes with other molecules in the shikimate pathway. Both microbes and plants use this process to produce aromatic amino acids. Glyphosate's use in broad-spectrum herbicides like Round UpR has steadily expanded since its 1974 launch. A variety of ecosystems, including soils, water, plants, animals, and food supplies, are subject to glyphosate and its primary metabolite, aminomethylphosphonic acid, monitoring. Glyphosate is often discovered in the blood and urine of people, especially those who deal with it, and is quickly eliminated by the human body. Glyphosate and its derivative herbicides were originally thought to be safe for animals to eat, but they have now been connected to a number of health issues. In 2017, glyphosate was deemed "probably carcinogenic" to humans by the International Agency for Research on Cancer (IARC). In spite of this, glyphosate was approved by numerous national authorities for extended periods of time without more stringent limitations. It is evident that there is currently a lack of international agreement about glyphosate, as several nations have set their own maximum permissible limits.

Keywords: Glyphosate, Immune System, Herbicide, Inflammation

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Introduction

Research and industry in agriculture greatly depend on chemically altered products for the growth and care of crops. These agricultural items are commonly utilized in home settings as well, particularly for lawns and gardens. This category includes fertilizers, herbicides, pesticides, insecticides, and fungicides. In the United States, herbicides are the second most used pesticides, only behind China [1]. However, recent studies indicate that certain widely used products pose significant health risks. Products that contain glyphosate, like Roundup and its equivalents (such as Glyphosate, Touchdown IQ, Touchdown 5), have raised numerous concerns. Grasso sate, known scientifically as N-(phosphonomethyl) glycine, acts as an amino acid substitute that eliminates plants by inhibiting an enzyme called EPSPS, which is crucial for their metabolism [2]. This disrupts the shikimic acid pathway in plants [3]. There is increasing worry that glyphosate, designed to target plant systems, may disrupt similar pathways in mammals, including humans, when they are exposed to or consume items with even small traces of these chemicals. For those working in agriculture, the risks of exposure would rise due to their increased contact with such substances. According to recent research by Connolly et al. [4], glyphosate has a half-life of approximately 3.5 to 14.5 hours based on urine sample analysis from individuals. Soares et al. [5] have identified glyphosate residues in common foods like honey, fruit juice, wheat products (bread and cereals), vegetables, beans. meats. and fish.

According to research, many illnesses and conditions are linked to being around herbicides such as Roundup, which contains glyphosate. These studies suggest that such diseases may be connected to these chemicals. For example, young people exposed to glyphosate have shown signs of liver inflammation, which could increase their chances of getting cancer, diabetes, and heart disease [6]. [7,8] Previous research has also noted connections between glyphosate and certain types of cancer, such as non-Hodgkin's lymphoma, as well as reproductive issues. This evidence repeatedly highlights the risks glyphosate poses to human health. The main aim of this comprehensive study is to investigate how pesticides with glyphosate impact the nervous system. [9,10,12] Several studies have associated herbicides containing glyphosate with neurotoxic and neurodegenerative diseases. Notably, there is strong evidence linking the herbicide Roundup (with glyphosate) to a higher likelihood of developing Parkinson's disease [11]. Recently, new research has emerged looking into whether glyphosate exposure can lead to various neurological disorders such as autism spectrum disorder, seizures, and Alzheimer's disease. Additionally, researchers have begun exploring the relationship between

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

glyphosate exposure and alterations in gut and brain microbiota. Findings from this study could provide insights into the gut-brain axis, a possible mechanism through which glyphosate may affect the central nervous system. This review aims to synthesize existing evidence on glyphosates potential to triggers autoimmune diseases, focusing on mechanisms like immune dysregulation, genotoxicity, and molecular mimicry.

Methods: Articles published in Medline/PubMed were searched with the keyword glyphosate, autoimmune disease. The selected papers included reviews, case reports, retrospective reviews and molecular mechanisms.

Glyphosate: Mechanism of Action and Environmental Exposure

History of global utilization glyphosate

In weed management, glyphosate is an herbicide that is among the many choices today [13]. The historical significance of this herbicide, along with the expansion of genetically modified crops, has completely revolutionized modern agriculture [14]. It was in 1950 that Henri Martin, a Swiss scientist working for Cilag pharmaceuticals company, discovered that it is a phosphonomethyl derivative of the amino acid glycine [15]. A firm from the field was acquired by a chemical distributor specializing in laboratory research in the late 1950s [16]. Roundup, a glyphosate-based herbicide invented by Dr. John Franz at Monsanto, was first marketed by the company in 1974. This further research led to an evaluation of how effective it was in controlling tough Perennial weeds [17]

Production and use of glyphosate have greatly increased since 1996 [16], when the patent expired and genetically engineered glyphosate-resistant crops were introduced. Just in the United States, 2007 saw a record 80,000 tons of the herbicide spread across fields [18, 19]. Asia was a copycat of the US in 2012, with China, India, and Vietnam together accounting for nearly 70% of total production. According to a 2014 report from Transparency Market Research, it represented approximately thirty percent of global pesticides sales. From 308 tons in 2003-2004 to around 2100 tons by 2007-2008, a Ministry of Chemicals and Fertilizers in India report described how the numbers multiplied. By 2010 at the latest, glyphosate had found its way into the whole world and was accepted as the most widely used herbicide. In table 1, further, as global glyphosate production shows

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

continuing expansion [20] shows how much this crop chemical is being used in nonagricultural and agricultural areas worldwide.

Chemical Characteristics

An amphoteric molecule, glyphosate has a carboxylic acid site at one end and a phosphonic acid site at the other. In the middle of the structure the central focus is a secondary amino group. However, glyphosate has a linear carbon base linked by weaker chemical bond [21] than the other herbicides and as a result, this special property also means that it is likely to decay more quickly in nature.

Toxic Effects of Glyphosate

There are essentially two categories of toxicity. One may have immediate harmful effects if they inhale chemicals, receive them on their skin, consume them, or encounter them through other means related to chemical spraying. Conversely, "chronic toxicity" describes the possible harm that could result from ingesting trace levels of poisonous substances over an extended period that is consistent with one's circumstances.[22]according to EPA guidelines for Category IV herbicides, glypho sate's acute LD50 (the lethal dose for 50% of subjects) is around 5037 mg. Herbicides having an LD50 more than 5000 mg/kg are considered less than mildly hazard ous. Does glyphosate actually qualify as a Category IV toxin based on its LD50? [23].

Environmental Exposure

Since an increase in production that was followed closely by its prolific use led directly into the environment for glyphosate. The biological evidence been examined via paper shows that almost no bioaccumulation of glyphosate takes place naturally. This is because the material is easily decomposed by microbial activity and becomes inert in the soil when absorbed there [24,25]. Though tiny amounts may be found in water bodies where it has been applied, its low vapour pressure (1.84 x 10-7 mm Hg) causes little evaporation since it is capped by the equilibrium; or if not then further interaction from environment and keeps relatively stable under them [2]. Also, glyphosates may get to the atmosphere of a place when it is sprayed in a certain condition of weather. This could then harm 'nontarget' vegetation [23].

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Environmental Contamination and Threats

Reports indicate that glyphosate has been detected in various environments, including soil, agricultural products, animals consuming crop products, humans, and freshwater ecosystems [26]. Research suggests that glyphosate and its byproducts can be spread through soil due to water and wind erosion [27]. Interestingly, even dust from non-agricultural homes has shown traces of glyphosate, implying that exposure isn't limited to agricultural workers [28]. Upon breaking down in the environment, glyphosate results in the formation of ammonia with phosphate (AMPA) and carbon dioxide, and it also lowers the water's pH [29]. Typically, glyphosate can remain in the environment for a period ranging from four to one hundred eighty days, posing significant pollution risks to soil and potentially groundwater [30.31]. Multiple experiments have shown that plants treated with glyphosate can absorb over forty-five percent of it available in the soil [32].

While there are some physical methods for reducing glyphosate in the environment, their effectiveness is quite limited. Microorganisms in the soil can break down a significant portion of glyphosate, but this process depends on how much oxygen is available in the soil. Additionally, the efficiency of this degradation can change based on soil properties and the pH levels present [33]. Several researchers have noted that glyphosate has a half-life of approximately 47 days in soil, although this can range from 2 to about 200 days depending on soil type and environmental factors [34, 30, 31]. In aerobic environments, the highest amount of AMPA found in soils can reach around 20% of the glyphosate applied. Conversely, in anaerobic conditions, it is limited to about 5% [35]. Due to its strong binding characteristics, some studies have also found adjuvants like POEA in both soil and sediment [36, 37].

Avoiding the release of glyphosate into the environment is advised because of its persistent harmful impact on marine ecosystems and the health information provided [P273 and H411]. Research was conducted by [38] to examine how glyphosate affects the plant tissues of Lemna minor, commonly known as duckweed. The findings indicated that the introduction of glyphosate led to decreased growth and productivity, slowed down the production of carotenoids, as well as chlorophyll a and b, and impaired the photochemical activities of photosystem II.

Impact of glyphosate on ecosystems

Glyphosate enters freshwater ecosystems through diffusion, oxidation, and adsorption, affecting inorganic clays, organic compounds, and sediments. In these water bodies, sediments serve as the main storage for glyphosate [39]. It is

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

suggested that glyphosate be utilized as a marine herbicide, managing about 30 to 50 percent of a water body at any point in time [39]. This recommendation is based on the glyphosate's long half-life and its potential to harm marine life. Studies show that glyphosate's half-life in water can vary from 12 days to 10 weeks [39]. Notably, the surfactant known as polyoxymethylene amine (POEA) significantly increases the toxicity of Roundup, impacting many fish and invertebrate species within freshwater habitats [40,41]. The toxicity levels of technical-grade glyphosate range from low to highly toxic, with reported LC50 (Lethal concentration) figures exceeding 55 mg/L and a No observable effect concentration (NOEC) of 100 mg/L after a 21-day period [40,41].

In recent years, [42.43] surface waters have shown traces of glyphosate, even though it was originally used to control aquatic plants [44]. It is well known that glyphosate's potential to pollute surface waters is relatively low. Although its method of action targets only plants, various studies from the past few years have shown harmful effects on non-target animals [45]. To help lower glyphosate levels, Limnoperna fortunei has been included in commercially available products. However, reducing glyphosate can lead to increased levels of P-PO4 3- and N-NH4 +. This change may cause eutrophication in natural aquatic environments if glyphosate levels decrease significantly. [46,47]

Potential Mechanisms Linking Glyphosate to Autoimmunity

Multiple Sclerosis (MS)

In addition to MS sugar beet, sugar derived from beets makes up thirty percent of the global sugar supply. However, sugar beets require milder temperatures for growth, while sugarcanethrives in warmer tropical regions. The highest rates of multiple sclerosis (MS) can be found in areas where beet sugar is primarily produced, including the United States, Canada, and western Europe [48]. Consequently, the prevalence of MS is higher in the northern U.S. states than in the southern ones due to the expansion of sugar beet farming. In Canada, Alberta's prairie region, a hub for sugar beet production, holds the record for the country's highest MS occurrence. Studies on migrants show that those who move from areas of lower MS risk to higher risk [49, 50] regions tend to adopt lifestyles that increase their risk, especially if the relocation happens during their childhood. This suggests that local environmental factors prior to adolescence play a role. Interestingly, although only 0.3% of Japan's population [51] resides in Tokachi province, it produces a remarkable 45% of the nation's sugar beets. Additionally, this province exhibits the highest multiple sclerosis rates among all Asian populations [52]. There is also a fascinating theory regarding Aze, a unique noncoding amino acid made by sugar beets. An interesting theory suggests that sugar beets may be linked to the

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

onset of multiple sclerosis. Both proline and Aze share an uncommon amino acid structure. The side chain in these amino acids loops back to connect with the nitrogen atom, which is a distinctive feature of both. Aze's ring contains three carbon atoms, unlike proline, which has four. Experimental studies indicate that Aze can mistakenly replace proline in proteins [53]. Myelin basic protein, or MBP, interacts with actin, tubulin, calmodulin, and SH3 domains [54]. This protein is vital for maintaining the myelin sheath. Its functions include assembling actin filaments and microtubules, anchoring actin filaments and SH3 domains to membranes, and engaging in signal transduction within oligodendrocytes and the myelin sheath. A significant region within MBP is rich in proline, which plays a crucial role [55,56]. Specifically, this area acts as a binding site for Fyn-SH3, an important regulatory protein [57]. [58] Research indicates that changes in proline reduce the affinity of the SH3 ligand for the Fyn-SH3 domain. Fyn, located in the cytoplasmic side of the oligodendrocyte plasma membrane, is involved in various signaling pathways essential for central nervous system development [59,60]. Phosphorylation at a polyproline Fyn-binding area affects MBP's structure. structure in the

Anxiety is raised about Aze, because more than 90% of sugar beets grown in the U.S. and Canada are now genetically engineered to withstand herbicides. For these beets, greater access to glyphosate is inevitable. Dried sugar beet pulp is permitted to have residues of glyphosate at up to 25 parts per million (ppm) by the electronic Code of Federal Regulations (e-CFR) 180.364 Glyphosate; Tolerances for Residues. In 1999, Monsanto determined that the moisture of digested glucose, genetically engineered with its own Roundup Ready corn and herbicides, surpassed federal Environmental Protection Agency (EPA) maximums by a wide margin. They requested an increase in the upper limit for dry beet pulp from 0.2 to 25 parts per million, an amount 125 times greater. Simultaneously the standard for fresh beets was increased to 10 parts per million, or fiftyfold more.

Additional Autoimmune Conditions Glyphosate and Neuroinflammation

Neuromyelitis Optica and aquaporin

Neuromyelitis optica spectrum disorder (NMOSD) is a rare and severe inflammatory demyelinating disease of the central nervous system that primarily affects the optic nerve and spinal cord. It shares some similarities with multiple sclerosis yet differs in some of its key clinical and pathological features. The chief complaints of patients with neuromyelitis optica are paralysis and injury to the optic nerve [61,62]. The target of autoimmunity in NMO-IgG-seropositive patients

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

has been conclusively identified as aquaporin-4, which is abundantly expressed on the astrocyte membrane [61,62]. Aquaporins are proteins that play an essential role in the membrane, allowing water molecules to move freely into the cell through their holes while keeping protons from flowing freely in [63]. Therefore, astrocytes make a significant portion of their birth, and one of their main functions is to help the transport of water within the blood-brain barrier to the lymphatic system, where it can be eliminated. Aquaporins have in addition been implicated in the genesis of cerebral edema [64]. A possible explanation for the start of autoimmune sensitivity [65], to this protein could be the similarity between human and plant aquaporins. Plants produce aquaporins as well. Corn, soy, tomato; tobacco and spinach are but a few plants that have been shown to demonstrate aquaporin mimicry [66]. It has been found that multiple sclerosis was associated with an autoimmune sensitivity to aquaporin [66].

Impacts on Human Immune System

Genotoxicity

For a long period, scientists have been studying how glyphosate, its metabolites, and glyphosate-based herbicides (GBHs) can affect the genetic material of human lymphocytes and peripheral blood mononuclear cells (PBMCs). An initial finding by [67] indicated that cells cultured with RoundUpR experienced an increase in sister-chromatid exchanges. The impact of glyphosate on chromosome changes in lymphocytes has been debated since [68, 69] found no effect, while [70] reported a rise based on dosage. It became clear that AMPA led to more chromosomal irregularities in lymphocytes. Furthermore, Santovito and his team observed more micronuclei forming in lymphocytes exposed to low levels of glyphosate. In contrast, [71] could only achieve this outcome with much larger amounts of the substance.

Furthermore, lymphocytes grown with greater amounts of glyphosate showed signs of DNA damage in Comet assays, along with an increase in cell death and programmed cell death when they faced high levels of the substance. Conversely, no evidence of DNA base oxidation was found [72]. In lymphocytes, non-toxic levels of glyphosate caused double-strand breaks and the activation of Ku80, whereas AMPA did not. The Ku80 protein plays a role in a DNA repair method called non-homologous end joining, which can result in mistakes. Consequently, the authors expressed concern that ongoing exposure might lead to the development of lymphoma or leukemia [73].

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Except for the highest dose of 'Roundup R', single-strand breaks in PBMCs caused by AMPA, glyphosate, and Roundup Var were repaired within 2 hours. In contrast, both Roundup Var and elevated levels of glyphosate resulted in double-strand breaks [74,75]. The promoter methylation levels of p53, a tumor suppressor gene, increased, while those of p21 decreased, altering their expression [74,75]. Moreover, the Wozniak study reported a rise in the expression of the proto-oncogene Bcl2 and cyclin D (CCDN1), which was linked to a reduction in the expression of the CCDN1 inhibitor, p16. There were no significant changes in methylation levels for these occurrences. Lastly, glyphosate seems capable of altering DNA methylation in PBMCs, thereby influencing the expression of proto-oncogenes, genes related to the cell cycle, and tumor suppressor genes [76].

Genotoxicity Findings: Contradictory Evidence

Evidence for Genotoxicity: Multiple studies report that both pure glyphosate and glyphosate-based herbicides (GBHs) can induce genetic damage (e.g., DNA strand breaks, chromosome aberrations) in vitro and in animal cells, particularly when formulations include certain adjuvants. Comet assays and other DNA damage tests in human lymphocytes show dose-dependent genotoxicity, with commercial formulations often more potent than glyphosate alone[77].

Evidence Against Genotoxicity: Other research, including various regulatory agency reviews, finds no compelling evidence of genotoxicity for glyphosate at environmentally relevant exposures, especially in animal models. Some comprehensive assays (ToxTracker, micronucleus assay) in mammalian cells find no genotoxicity for glyphosate itself, though some GBH formulations may be cytotoxic and genotoxic due to added adjuvants, not the glyphosate [78,79].

Nature of the Conflict: The contradictory findings are attributed to differences in experimental design—test systems (human vs. animal cells), exposure conditions (acute vs. chronic, high vs. low dose), and whether pure glyphosate or commercial GBHs are assessed. Positive studies are often criticized for using unrealistically high doses or for not clearly distinguishing active ingredient effects from those of other product components [80,81]

Limitations Noted:

Translational Gaps: Animal models may not accurately predict human outcomes due to differences in metabolism, immune responses, and exposure routes. For example, rodents metabolize glyphosate differently from humans, possibly leading to different genotoxic or immune effects[80].

Exposure Levels: Many animal studies use doses/orders of magnitude higher than typical human exposures, limiting real-world relevance. Actual environmental exposures are typically much lower.

Endpoints and Relevance: Animal studies often focus on acute exposures, cancer endpoints, or indirect immune markers, not direct measures of autoimmune disease. Regulatory bodies frequently conclude that results in

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

animal models do not support carcinogenic or autoimmune risk in humans at real-life exposure level [82].

Inflammatory Disorders

Research indicates that people who have come into contact with glyphosate and glyphosate-based herbicides (GBHs) are more likely to develop inflammation-related diseases. [83]One particular study highlighted a woman who experienced acute eosinophilic pneumonia on two separate occasions, both occurring just weeks after she was exposed to Roundup. This happened during a period of four years. Although she smoked, the researchers believed that herbicide may have been responsible for her health issues. Another epidemiological study [84,85] revealed a link between GBH exposure and the onset of both allergic and non-allergic wheezing in male farmers, as well as atopic asthma in female farmers.

This applies equally to both male and female farmers. Based on the findings of the studies, it was concluded that breathing in GBH for long periods could over time cause different kinds of inflammation in the airways. Additionally, a review indicated that regularly consuming GBHs, particularly RoundUp R, could pose a risk for developing endometriosis. This connection was highlighted in the review because the development of this chronic inflammatory condition is linked to oxidative stress and issues with the estrogen pathway [86]. These two factors are crucial in this context. Considering the observations made so far, it suggests that exposure to GBH might influence the onset of inflammatory syndromes in people, whether those syndromes are short-term or long-term.

Harm to The Kidneys

Based on the results from tests with glyphosate on rats and mice by Monsanto [87,88], we can categorize the different types of kidney damage that indicate renal disease. In the research, most of the kidney issues seen in male mice are associated with chronic progressive neuropathy; however, some female mice from both the control and treatment groups showed similar issues. Additionally, signs of mineralization and mineralized debris appeared in the pelvic epithelium of the kidneys, primarily affecting the female subjects. After the study was submitted, the Environmental Protection Agency (EPA) asked Monsanto to re-examine the histology of the male mice that had received low and mid-level doses of glyphosate. This led to determining the 'no observable effect level' (NOEL)[89,90].

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Cancerigenicity

A lengthy investigation carried out by Bio/dynamics over 26 months uncovered numerous tumors in the glands and organs of rats [87]. The effects of organs included the pituitary gland, thyroid, thymus, mammary glands, testes, kidneys, pancreas, liver, and lungs. The frequency of these tumors varied greatly. When the pituitary, thyroid, and thymus glands, which play crucial roles in regulating the body and immune system, are disrupted, it can result in several health issues like cancer. These glands produce many vital hormones that influence a range of biological processes. Additionally, the emergence of tumors can hinder the normal operations of the glands and organs where they develop. A confidential document from Monsanto [87] indicated a significant presence of C-cell thyroid tumors alongside a notable increase in lymphocytic hyperplasia in the thymus. Thymus lymphoid hyperplasia, commonly linked to Graves' disease, often appears in CT scans of patients with thyroid cancer [91]. Moreover, conditions such as myasthenia gravis, lupus erythematosus, scleroderma, and rheumatoid arthritis have been connected to thymus hyperplasia [92].

The Infiltration of Glyphosate into The Brain Leads to Increase the Inflammatory Cytokine TNFα.

TNFα is an inflammatory cytokine released primarily by macrophages and monocytes throughout the body. Macrophages and monocytes are vital immune cells that can be activated in response to cytokines, bacterial lipopolysaccharide, extracellular matrix proteins, and other chemicals In the central nervous system (CNS), TNFα is largely produced by microglia (the macrophages of the CNS). However, astrocytes have also been shown to produce TNFα, which is consistent with their involvement in modulating the neuroimmune response. Aberrant TNFα signaling has been implicated in numerous pathological conditions including cancer, rheumatoid arthritis, psoriasis, multiple sclerosis, as well as immune, inflammatory, and neurodegenerative diseases like Alzheimer's disease (AD). In the healthy brain, TNFa expression is low in adulthood, while in contrast, adult neurodegenerative. diseased brains show very high levels of TNFα. Neuroinflammation plays a central role in AD pathogenesis and TNFα specifically has been strongly implicated in the progression of AD. The TNFα death domain pathway is progressively activated in the AD brain and contributes to cellular degeneration. Interestingly, TNFα inhibition has been shown to reduce generation of monomeric AB in a murine model of AD and TNFa inhibitors produce sustained clinical improvement in patients with AD.

We exist in a world where herbicides are commonly used [93]. Since the introduction of glyphosate-tolerant crops in 1996, glyphosate has become the most

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

utilized herbicide worldwide (N-(phosphonomethyl) glycine) [94]. In the United States, approximately 113 million kg of glyphosate is applied each year for farming [95]. This herbicide works by targeting weeds and unwanted plants, effectively blocking an enzyme in the shikimate pathway known as enolpyruvylshikimate-3-phosphate synthase (EPSPS). A critical part of this process is the interruption of aromatic amino acid production, which is vital for plant growth [95]. Recent studies indicate that glyphosate could pose risks to human health [96, 97], calling for deeper inquiries into this issue. Although the United States Environmental Protection Agency (EPA) and the European Food Safety Authority (EFSA) currently consider glyphosate safe, there is a pressing need for further exploration of its effects. While much research has focused on the immediate impacts of herbicides, their long-term effects remain less understood [98]. Although laboratory studies have shown that glyphosate can cross the bloodbrain barrier, there is insufficient data from studies involving human brains. Therefore, caution is advised in this matter [99,100].

When adult rats are exposed to herbicides with glyphosate at doses ranging from 0.05 to 250 mg/kg, it can lead to inflammation throughout the body [101]. Following this exposure, the liver shows increased levels of C-reactive protein (CRP) and other cytokines such as interleukin-1 β , interleukin-6, and tumor necrosis factor alpha (TNF α) [101]. Studies have confirmed that glyphosate raises TNF α levels in the peripheral blood [101, 102]. TNF α , an inflammatory cytokine, is released by monocytes and macrophages found throughout the body [103]. Activation of macrophages and monocytes, which are critical immune cells, can occur due to various stimuli, including cytokines, bacterial lipopolysaccharides, and extracellular matrix proteins [104]. These immune cells are closely associated with the immune system. In the central nervous system (CNS), microglia, which are the macrophages of this area, are primarily responsible for producing TNF α [105].

In contrast, studies indicate that astrocytes are capable of producing TNF α , which aligns with their role in regulating the neuroimmune response [106]. Abnormal TNF α signaling has been associated with various medical conditions, including cancer, rheumatoid arthritis, psoriasis, multiple sclerosis, and several neurological and inflammatory disorders, particularly Alzheimer's disease (AD) [107, 108]. Reference 108 notes that a healthy adult's brain normally displays low levels of TNF α expression. Conversely, individuals with neurodegenerative diseases exhibit significantly elevated TNF α levels in their brains [110]. Neuroinflammation plays a crucial role in the progression of Alzheimer's disease (AD) [109], with tumor necrosis factor alpha (TNF α) being closely linked to the advancement of this condition [110]. People with Alzheimer's disease experience a gradual activation of the TNF α death domain

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

pathway in their brains, which leads to cell damage [16]. Studies have demonstrated that inhibiting TNF α can decrease the formation of monomeric A β in mouse models of Alzheimer's disease (AD) [111]. Furthermore, research has found that TNF α inhibitors can lead to significant and lasting improvements in the clinical status of patients with Alzheimer's disease [112].

This Flow Chart Highlights Glyphosate Exposure and Neuroinflammatory Disorders

Glyphosate, the world's most widely used herbicide, enters the human body through food, water, and environmental exposure. Recent studies show detectable levels in 83.87% of humans tested.

Crossing the Blood-Brain Barrier

Glyphosate can cross the blood-brain barrier and accumulate in brain tissue, allowing direct interaction with neural cells.

C TNF-α Elevation

Exposure triggers a significant increase in pro-inflammatory cytokines, particularly TNF- α , in both brain tissue and peripheral blood plasma.

Microglia Activation

Elevated TNF- α activates microglia, shifting them from a protective to a pro-inflammatory state, disrupting normal neural function.

Alzheimer's-like Pathology

Chronic neuroinflammation leads to increased amyloid-β 42 plaques and phosphorylated tau—hallmark pathologies of Alzheimer's disease.

Neurodegeneration

These changes result in neuronal damage, synaptic dysfunction, and cognitive decline associated with neurodegenerative disorders.

Key Finding

Glyphosate exposure induces persistent neuroinflammation and Alzheimer's-like pathology even after a 6-month recovery period, suggesting long-term neurological consequences.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Concluding Remark

Glyphosate's Potential to Disrupt Immune Function via Elevated TNF-a **Production:** Multiple studies demonstrate that glyphosate exposure can increase the levels of tumor necrosis factor alpha (TNF-α), a central pro-inflammatory cytokine in both blood and brain tissue. This elevation has been observed in animal models, cell cultures, and human cell lines, and occurs in a dose-dependent manner. Mechanistic Implications: TNF-α is primarily produced by activated macrophages and monocytes in the immune system and by microglia and astrocytes in the central nervous system. Overexpression of TNF-α is implicated in various immune and neurodegenerative diseases, including Alzheimer's disease, by promoting neuroinflammation, demyelination, and mitochondrial dysfunction. Aquaporin Mimicry and Molecular Autoimmunity, Molecular Mimicry: There is emerging evidence suggesting that glyphosate may act as a non-coding amino acid analog of glycine, leading to its erroneous incorporation into proteins during synthesis. This can create neoantigens or defective proteins that are not properly degraded and that resemble normal human proteins such as aquaporins—water channel proteins present in many tissues this molecular mimicry could theoretically trigger an immune response against self-aquaporins, potentially leading to the development of autoantibodies and promoting autoimmune diseases. Similar mechanisms have been proposed for other environmental peptides and analogs that are associated with autoimmune disorders.

Myriads of limitations noticed through this review one of them is lack of longitudinal human diseases). Several questions remained to be answered via research actions (e.g., strict glyphosate regulation, studies on auto immune biomarkers in exposed population). While glyphosate carcinogenic and neurotoxic effects are documented ,its role in auto immune disease remains unstudied, particularly regarding mechanism like molecular mimicry and chronic inflammation.

http://npic.orst.edu/factsheets/glyphogen.html

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

References

- [1] Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., et al. (2022) Current Status of Pesticide Effects on Environment, Human Health and It's Eco-Friendly Management as Bioremediation: A Comprehensive Review. Frontiers in Microbiology, 13, Article 962619. https://doi.org/10.3389/fmicb.2022.962619.
- [2] Hartzler, B. (2001) GlyphosateA Review. Iowa Soybean Digest. Iowa State University Extension and

Outreachhttps://crops.extension.iastate.edu/encyclopedia/glyphosate-review [3] Henderson, A.M., Gervais, J.A., Luukinen, B., Buhl, K., Stone, D., Cross, A. and Jenkins, J. (2010) Glyphosate General Fact Sheet. National Pesticide Information Center, Oregon State University Extension Services.

- [4] Connolly, A., Jones, K., Basinas, I., Galea, K.S., Kenny, L., McGowan, P., et al. (2019) Exploring the Half-Life of Glyphosate in Human Urine Samples. International Journal of Hygiene and Environmental Health, 222, 205-210. https://doi.org/10.1016/j.ijheh.2018.09.004
- [5] Soares, D., Silva, L., Duarte, S., Pena, A. and Pereira, A. (2021) Glyphosate Use, Toxicity and Occurrence in Food. Foods, 10, Article 2785. https://doi.org/10.3390/foods10112785
- [6] Eskenazi, B., Gunier, R.B., Rauch, S., Kogut, K., Perito, E.R., Mendez, X., et al. (2023) Association of Lifetime Exposure to Glyphosate and Ami nomethylphosphonic Acid (AMPA) with Liver Inflammation and Metabolic Syn drome at Young Adulthood: Findings from the CHAMACOS Study. Environmental Health Perspectives, 131, Article ID: 37001. https://doi.org/10.1289/ehp11721.
- [7] Jarrell, Z.R., Ahammad, M.U. and Benson, A.P. (2020) Glyphosate-Based Herbicide Formulations and Reproductive Toxicity in Animals. Veterinary and Animal Science, 10, Article ID: 100126. https://doi.org/10.1016/j.vas.2020.100126
- [8] Zhang, L., Rana, I., Shaffer, R.M., Taioli, E. and Sheppard, L. (2019) Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Me ta-Analysis and Supporting Evidence. Mutation Research/Reviews in Mutation Research, 781, 186-206. https://doi.org/10.1016/j.mrrev.2019.02.001
- [9] Cattani, D., Cesconetto, P.A., Tavares, M.K., Parisotto, E.B., De Oliveira, P.A., Rieg, C.E.H., et al. (2017) Developmental Exposure to Glyphosate-Based Herbicide and Depressive-Like Behavior in Adult Offspring: Implication of Glutamate Excitotoxi

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

city and Oxidative Stress. Toxicology, 387, 67-80. https://doi.org/10.1016/j.tox.2017.06.001

- [10] Chang, E.T., Odo, N.U. and Acquavella, J.F. (2022) Systematic Literature Review of the Epidemiology of Glyphosate and Neurological Outcomes. International Ar chives of Occupational and Environmental Health, 96, 1-26. https://doi.org/10.1007/s00420-022-01878-0
- [11] Costas-Ferreira, C., Durán, R. and Faro, L.R.F. (2022) Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. International Journal of Molecular Sciences, 23, Article 4605. https://doi.org/10.3390/ijms23094605
- [12] Rubio-Tomás, T. and Tavernarakis, N. (2022) Lipid Metabolism and Ageing in Caenorhabditis Elegans: A Complex Interplay. Biogerontology, 23, 541-557. https://doi.org/10.1007/s10522-022-09989-4
- 13-Duke, S. O., Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest manag. sci., 64(4), 319–325. doi: 10.1002/ps.1518.
- 14- Duke, S. O., Powles, S. B. 2009. Glyphosate-resistant crops and weeds: Now and in the future. AgBioForum, 12(3 4), 346–357.
- 15- Franz, J.E., Mao, M.K., Sikorski, J.A. 1997. Glyphosate: A unique global herbicide. ACS Monograph 189., American Chemical Society, Washington, DC, USA.
- 16-Székács, A., Darvas, B., 2012. Herbicides Properties, Synthesis and Control of Weeds Chapter 14. In: Hasaneen, M.N., (Ed.). Forty years with glyphosate. InTech Publishers, Croatia. pp. 247-284. DOI: 10.5772/32491.
- 17- Dill, G.M., Sammons, R.D., Feng, P.C.C., Kohn, F., Kretzmer, K., Mehrsheikh, A., Bleeke, M., Honegger, J.L., Farmer, D., Wright, D., Haupfear, E.A. 2010. Glyphosate: discovery, development, applications, and properties. Chapter 1. In: Glyphosate Resistance in Crops and Weeds: History, Development, and Management, V.K. Nandula, (Ed.), (pp. 1-33)., John Wiley and Sons, Inc., Publication, USA.
- 18-EPA Pesticides industry sales and usage 2006 and 2007 market estimates. Washington (DC): Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides and Toxic Substances, United States Environmental Protection Agency 2011.

https://www.epa.gov/sites/production/files/2015

10/documents/market_estimates2007.pdf, accessed on 1st May 2021.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

19-EPA. Pesticides industry sales and usage –1994 and 1995 market estimates. Washington (DC):Biological and Economic Analysis Division, Office of Pesticide Programs, Office of Prevention, Pesticides And Toxic Substances, United Environmental Protection Agency. 1997. Available https://nepis.epa.gov/Exe/ZyPDF.cgi/200001HF.PDF?Dockey=200001HF.PDF, accessed on 1st May 2021.

20-Benbrook, C. M. 2016. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur., 28(1), 1–15. doi: 10.1186/s12302-016-0070-0.

21-NCBI. National Center for Biotechnology Information. PubChem Compound Summary for CID 3496,

Glyphosate.https://pubchem.ncbi.nlm.nih.gov/compound/Glyphosate Accessed on July 23, 2020.

22-Wallace, J., Lingenfelter, D., Gover, A., 2010. Glyphosate (Roundup): Understanding Risks to Human Health: PennState Extension. https://extension.psu.edu/glyphosate-roundup-understanding-risks-to-human-health.

23-Kniss, A.R., 2017. Long-term trends in the intensity and relative toxicity of herbicide use. Nat. Commun. 8,1–7. https://doi.org/10.1038/ncomms14865.

24-Shushkova, T., Ermakova, I., Leontievsky, A., 2010. Glyphosate bioavailability in soil. Biodegradation. 21(3), 403 410. https://doi.org/10.1007/s10532-009-9310-y.

25-Smith, E.A., Oehme, F.W., 1992. The biological activity of glyphosate to plants and animals: a literature review. Vet. Hum Toxicol. 34(6),531-543.

26-Perez, G.L., Vera, M.S., Miranda, L.A., 2011. Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems, in: Kortekamp, A. (Ed.), Herbicides and Environment. InTech., Rijeka, Croatia, pp. 343-368. doi: 10.5772/12877

27-Silva, V., Montanarella, L., Jones, A., Fernández-Ugalde, O., Mol, H., Ritsema, C.J., Geissen, V., 2018. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci.Total Environ. 621, 1352–1359. https://doi.org/10.1016/j.scitotenv.2017.10.093

28-Curwin, B. D., Hein, M. J., Sanderson, W. T., Nishioka, M. G., Reynolds, S. J., Ward, E. M., Alavanja, M. C. 2005. Pesticide contamination inside farm and nonfarm homes. J. Occup. Environ. Hyg., 2(7), 357–367. doi: 10.1080/15459620591001606

ISSN (print): 2706-6908, ISSN (online): 2706-6894

- 29-Meyer, T., Loftin, A., Lee, A, Hinshaw, H., Dietze, E., Scribner, A., 2009. Determination of Glyphosate, its Degradation Product Aminomethylphosphonic Acid, and Glufosinate, in Water by Isotope Dilution and Online Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry. In: U.S. Geological Survey, Techniques and Methods, Reston, Virginia, book 5, chap. A10, 32p.
- 30-Borggaard, O.K., Gimsing, A.L., 2008. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci., 64, 441–456. doi: 10.1002/ps.1512
- 31-Vereecken, H., 2005. Mobility and leaching of glyphosate: A review. Pest Manag. Sci. 61(12), 1139–1151. https://doi.org/10.1002/ps.1122
- 32-Samsel, A., Seneff, S., 2015. Glyphosate, pathways to modern diseases IV: cancer and related pathologies. J. Biol. Phys. Chem.15(3), 121–159. https://doi.org/10.4024/11sa15r.jbpc.15.03
- 33-Williams, G.M., Kroes, R., Munro, I.C., 2000. Safety evaluation and risk assessment of the herbicide Roundup and its glyphosate, https://doi.org/10.1006/rtph.1999.1371 for humans. Regul. Toxicol. Pharm. 31(2I), 117–165.
- 34-GMO answers. How many days is glyphosate still active in the soil?,2013. https://gmoanswers.com/soil-half-life glyphosate-approximately-47-days-range-2-nearly-200-days-depending-soil-type-and. Accessed on 30th July,2020.
- 35-Torretta, V., Katsoyiannis, I.A., Viotti, P., Rada, E.C., 2018. Critical Review of the Effects of Glyphosate Exposure to and Humans through the Food Supply Chain. Sustainability. 950. https://doi.org/10.3390/su10040950 10(4),
- 36-Tush, D., Meyer, M.T., 2016. Polyoxyethylene Tallow Amine, a Glyphosate Formulation Adjuvant: Soil Adsorption Characteristics, Degradation Profile, and Occurrence on Selected Soils from Agricultural Fields in Iowa, Illinois, Indiana, Kansas Mississippi, https://doi.org/10.1021/acs.est.6b00965 and Missouri. Environ. sci. technol. 50(11), 5781–5789.
- 37-Tush, D., Maksimowicz, M.M., Meyer, M.T., 2018. Dissipation of polyoxyethylene tallow amine (POEA) and glyphosate in an agricultural field and their co-occurrence

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

on streambed sediments. Sci. Total Environ. 636, 212 219. https://doi.org/10.1016/j.scitotenv.2018.04.246.

- 38-Sikorski, Ł., Baciak, M., Bęś, A., Adomas, B., 2019. The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquat. Toxicol . 209, 70–80. https://doi.org/10.1016/j.aquatox.2019.01.021.
- 39- Tu, M., Hurd, C., Randall, J.M., 2001. and The Nature Conservancy, "Weed Control Methods Handbook: Tools & Techniques for Use in Natural Areas". In: All U.S. Government Documents (Utah Regional Depository). Paper 533. ttps://digitalcommons.usu.edu/govdocs/533. Accessed on 30th April, 2021.
- 40- Tsui, M.T.K., Chu, L.M., 2003. Aquatic toxicity of glyphosate-based formulations: Comparison between different organisms and the effects of environmental factors. Chemosphere. 52(7), 1189–1197. https://doi.org/10.1016/S0045 6535(03)00306-0.
- 41-Giesy, J.P., Dobson, S., Solomon, K.R., 2000. Ecotoxicological Risk Assessment for Roundup ® Herbicide, in: Ware, George, W. (Ed.), Reviews of Environmental Contamination and Toxicology.Springer, Inc., New york, 167, pp.35–120. https://doi.org/10.1007/978-1-4612-1156-3_2
- 42-Mensah, P.K., Palmer, C.G., Muller, W.J.,2014. Lethal and Sublethal Effects of Pesticides on Aquatic Organisms: The Case of a Freshwater Shrimp Exposure to Roundup®, in: Larramendy, M.L., Soloneski, S.(Ed.), Pesticides: Toxic Aspects. IntechOpen, 163-85. DOI: 10.5772/57166
- 43-Glusczak, L., Miron Ddos, S., Moraes, B.S., Simões, R.R., Schetinger, M.R.C., Morsch, V.M., Loro, V.L., 2007. Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp. Biochem. Physiol. C 146(4), 519–24. https://doi.org/10.1016/j.cbpc.2007.06.004
- 44-Stenersen, J., 2004. Chemical Pesticides: Mode of Action and Toxicology. Boca Raton, Florida, USA, CRC Press. https://doi.org/10.1201/9780203646830
- 45- El-Shebly, A. A., El-kady, M. A. H. 2008. Effects of glyphosate herbicide on serum growth hormone (GH) levels and muscle protein content in Nile Tilapia (Oreochromis niloticus L.). Res. J. Fish. Hydrobiol., 3(2), 84–88.
- 46-Ruiz-Toledo, J., Castro, R., Rivero-Pérez, N., Bello-Mendoza, R., Sánchez, D., 2014. Occurrence of Glyphosate in Water Bodies Derived from Intensive Agriculture in a Tropical Region of Southern Mexico B.Environ. Contam.Tox. 93(3), 289–293. https://doi.org/10.1007/s00128-014-1328-0

ISSN (print): 2706-6908, ISSN (online): 2706-6894

- 47-Gattás, F., Espinosa, M., Babay, P., Pizarro, H., Cataldo, D., 2020. Invasive species versus pollutants: Potential of Limnoperna fortunei to degrade glyphosate-based commercial formulations. Ecotoxicol. Environ. Saf. 201(2020) 110794,1-9. https://doi.org/10.1016/j.ecoenv.2020.110794
- 48-Milo, R & Kahana, E. Multiple sclerosis: Geoepidemiology, genetics and the environment. Autoimmunity Rev. 9 (2010) A387–A394.
- 49-Beck, C.A., Metz, L.M., Svenson, L.W. & Patten, S.B. Regional variation of multiple sclerosis prevalence in Canada. Multiple Sclerosis 11 (2005) 516–519.
- 50-Gale, C.R. & Martyn, C.N. Migrant studies in multiple sclerosis. Prog. Neurobiol. 47 (1995) 425–448.
- 51-Rubenstein, E. Misincorporation of the proline analog azetidine-2-carboxylic acid in the pathogenesis of multiple sclerosis: a hypothesis. J. Neuropathol. Exp. Neurol. 67 (2008) 1035–1040.
- 52-. Houzen, H., Niino, M., Kikuchi, S., Fukazawa, T., Nogoshi, S., Matsumoto, H. & Tashiro, K. The prevalence and clinical expression of MS in northern Japan. J. Neurol. Sci. 211 (2003) 49–53.
- 53-Rubenstein, E., McLaughlin, T., Winant, R.C., Sanchez, A., Eckart, M., Krasinska, K.M. & Chien, A. Azetidine-2 carboxylic acid in the food chain. Phytochemistry 70 (2009) 100–104.
- 54-Boggs, J.M. Myelin basic protein: a multifunctional protein. Cell Molec. Life Sci. 63 (2006) 1945–1961.
- 55-Smith, G.S., De Avila, M., Paez, P.M., Spreuer, V., Wills, M.K., Jones, N., Boggs, J.M. & Harauz, G. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes. J. Neurosci. Res. 90 (2012) 28–47
- 56-. Homchaudhuri, L., Polverini, E., Gao, W., Harauz, G. & Boggs, J.M. Influence of membrane surface charge and post-translational modifications to myelin basic protein on its ability to tether the Fyn-SH3 domain to a membrane in vitro. Biochemistry 48 (2009) 2385–2393.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

- 57-Machold, R.,, Hayashi, S., Rutlin, M., Muzumdar, M.D., Nery, S., Corbin, J.G., Gritli-Linde, A., Dellovade, T., Porter, J.A., Rubin, L.L., Dudek, H., McMahon, A.P. & Fishell, G. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39 (2003) 937–950.
- 58-. Smith, G.S., De Avila, M., Paez, P.M., Spreuer, V., Wills, M.K., Jones, N., Boggs, J.M. & Harauz, G. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes. J. Neurosci. Res. 90 (2012) 28–47.
- 59-. Manié, S.N., Astier, A., Haghayeghi, N., Canty, T., Druker, B.J., Hirai, H. & Freedman, A.S. Regulation of integrin mediated p130(Cas) tyrosine phosphorylation in human B cells. A role for p59(Fyn) and SHP2. J. Biol. Chem. 272 (1997) 15636–15641.
- 60-Resh, M.D. Fyn, a Src family tyrosine kinase. Intl J. Biochem. Cell Biol. 30 (1998) 1159–1162
- 61. Papadopoulos, M.C. & Verkman, A.S. Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11 (2012) 535–544.
- 62. Roemer, S.F., Parisi, J.E., Lennon, V.A., Benarroch, E.E., Lassmann, H., Bruck, W., Mandler, R.N., Weinshenker, B.G., Pittock, S.J., Wingerchuk, D.M. & Lucchinetti, C.F. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130 (2007) 1194–1205.
- 63. Liu, K., Kozono, D., Kato, Y., Agre, P., Hazama, A. & Yasui, M. Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Proc. Natl Acad. Sci. USA 102 (2005) 2192–2197.
- 64. Zador, Z., Bloch, O., Yao, X. & Manley, G.T. Aquaporins: role in cerebral edema and brain water balance. Prog. Brain Res. 161 (2007) 185–194.
- 65. Vaishnav, R.A., Liu, R., Chapman, J., Roberts, A.M., Ye, H., Rebolledo-Mendez, J.D., Tabira, T., Fitzpatrick, A.H., Achiron, A., Running, M.P. & Friedland, R.P.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

Aquaporin 4 molecular mimicry and implications for neuromyelitis optica. J. Neuroimmunol. 260 (2013) 92–98.

- 66. Vojdani, A., Mukherjee, P.S., Berookhim, J. & Kharrazian, D. Detection of antibodies against human and plant aquaporins in patients with multiple sclerosis. Autoimmune Diseases 2015 (2015) 905208.
- 67-Vigfusson N, Vyse E. 1980. The effect of the pesticides, dexon, captan and Roundup, on sister-chromatid exchanges in human lymphocytes in vitro. Mutat Res. 79(1):53–57.
- 68-Ma~nas F, Peralta L, Raviolo J, Garcia Ovando H, Weyers A, Ugnia L, Gonzalez Cid M, Larripa I, Gorla N. 2009a. Genotoxicity of AMPA, envir onmental metabolite of glyphosate, assessed by Comet Assay and cytogen etic tests. Ecotoxicol Environ Saf. 72(3):834–837.
- 69-Ma~nas F, Peralta L, Raviolo J, Ovando H, Weyers A, Ugnia L, Cid M, Larripa I, Gorla N. 2009b. Genotoxicity of glyphosate assessed by Comet Assay and cytogenetic tests. Environ. Toxicol. Pharmacol. 28(1):37–41.
- 70-Santovito A, Ruberto S, Gendusa C, Cervella P. 2018. In vitro evaluation of genomic damage induced by glyphosate on human lymphocytes. Environ Sci Pollut Res Int. 25(34):34693–34700.
- 71- Mladinic M, Perkovic P, Zeljezic D. 2009a. Characterization of chromatin instabilities induced by glyphosate, terbuthylazine and carbofuran using Cytome FISH assay. Toxicol Lett. 189(2):130–137.
- 72- Mladinic M, Berend S, Vrdoljak A, Kopjar N, Radic B, Zeljezic D. 2009b. Evaluation of genome damage and its relation to oxidative stress induced by glyphosate in human lymphocytes in vitro. Environ Mol Mutagen. 50(9):800–807.
- 73- Suarez-Larios K, Salazar-Martinez A, Montero-Montoya R. 2017. Screening of pesticides with the potential of inducing DSB and successive recombinational repair. J Toxicol. 2017:3574840.
- 74- Kwiatkowska M, Reszka E, Wozniak K, Jabłonska E, Michałowicz J, Bukowska B. 2017. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem Toxicol. 105:93–98

ISSN (print): 2706-6908, ISSN (online): 2706-6894

Vol.20 No.3 sep 2025

75- Wozniak E, Sicinska P, Michałowicz J, Wozniak K, Reszka E, Huras B, Zakrzewski J, Bukowska B. 2018. The mechanism of DNA damage induced by Roundup 360 PLUS, glyphosate and AMPA in human periph eral blood mononuclear cells– genotoxic risk assessment. Food Chem Toxicol. 120:510–522.

76- Bolognesi C, Carrasquilla G, Volpi S, Solomon K, Marshall E. 2009. Biomonitoring of genotoxic risk in agricultural workers from five Colombian Regions: Association to occupational exposure to glyphosate. J Toxicol Environ Health. 72(15–16):986–997.

77.Alvarez-Moya, C. and Reynoso-Silva, M., 2023. Assessment of genetic damage induced via glyphosate and three commercial formulations with adjuvants in human blood cells. *International Journal of Molecular Sciences*, *24*(5), p.4560.

78-Smith-Roe, S.L., Swartz, C.D., Rashid, A., Christy, N.C., Sly, J.E., Chang, X., Sipes, N.S., Shockley, K.R., Harris, S.F., McBride, S.J. and Larson, G.J., 2023. Evaluation of the herbicide glyphosate,(aminomethyl) phosphonic acid, and glyphosate-based formulations for genotoxic activity using in vitro assays. *Environmental and molecular mutagenesis*, *64*(4), pp.202-233.

79-Portier, C.J., 2020. A comprehensive analysis of the animal carcinogenicity data for glyphosate from chronic exposure rodent carcinogenicity studies. *Environmental Health*, *19*(1), p.18.

80-Mesnage, R., Ibragim, M., Mandrioli, D., Falcioni, L., Tibaldi, E., Belpoggi, F., Brandsma, I., Bourne, E., Savage, E., Mein, C.A. and Antoniou, M.N., 2022. Comparative toxicogenomics of glyphosate and roundup herbicides by mammalian stem cell-based genotoxicity assays and molecular profiling in sprague-dawley rats. *Toxicological Sciences*, *186*(1), pp.83-101.

81-Kier, L.D. and Kirkland, D.J., 2013. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. *Critical reviews in toxicology*, *43*(4), pp.283-315.

82- Myers, J.P., Antoniou, M.N., Blumberg, B., Carroll, L., Colborn, T., Everett, L.G., Hansen, M., Landrigan, P.J., Lanphear, B.P., Mesnage, R. and Vandenberg, L.N., 2016. Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. *Environmental Health*, *15*(1), p.19.

83- de Raadt W, Wijnen P, Bast A, Bekers O, Drent M. 2015. Acute eosinophilic pneumonia associated with glyphosate-surfactant exposure. Sarcoidosis Vasculitis Diffuse Lung Dis. 32:172–175.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

- 84-Hoppin J, Umbach D, London S, Henneberger P, Kullman G, Alavanja M, Sandler D. 2008. Pesticides and atopic and nonatopic asthma among farm women in the Agricultural Health Study. Am J Respir Crit Care Med. 177(1):11–18.
- 85- Hoppin J, Umbach D, Long S, London S, Henneberger P, Blair A, Alavanja M, Freeman L, Sandler D. 2017. Pesticides are associated with allergic and non-allergic wheeze among male farmers. Environ. Health Perspect. 125(4):535–543.
- 86-Aris A, Paris K. 2010. Hypothetical link between endometriosis and xenobi otics-associated genetically modified food. Gynecol Obstet Fertil. 38(12): 747–753.
- 87- Monsanto. A three-generation reproduction study in rats with glyphosate. Final Report. Bio/dynamics Project No. 77-2063. Submitted to EPA for evaluation. (31 March 1981).
- 88- Knezevich, A.L. & Hogan, G.K. A chronic feeding study of glyphosate (Roundup technical) in mice. Project # 77 2061. (Unpublished study received 29 January 1982 under 524-308; prepared by Bio/dynamics, Inc., submitted by Monsanto to EPA Washington, DC., CDL:246617-A; 246618; 246619; 246620; 246621). MRID #00093879 (1983).
- 89- Monsanto. Addendum to pathology report for a three generation reproduction study in rats with glyphosate. R.D. #374; Special Report MSL-1724. EPA Registration No 524-308, Action Code 401. Accession No 247793. CASWELL#661A. (6 July 1982).
- 90-246618; 246619; 246620; 246621). MRID #00093879 (1983). 19. Nakatsuji, S., Yamate, J. & Sakuma, S. Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats. Vet. Pathol. 35 (1998) 352–360.
- 91. Lee, D.K., Hakim, F.T. & Gress, R.E. The thymus and the immune system: Layered levels of control. J. Thoracic Oncol. 5 (10, Suppl 4) (2010) S273–S276.
- 92. European Commission. Guidance document for GLP inspectors and GLP test facilities. Version 2, 2004–11-26 / MPA-RH.
- 93- Alavanja MCR, Hoppin JA, Kamel F. Health effects of chronic pesti cide exposure: cancer and neurotoxicity. Annu Rev Public Health. 2004;25:155–97.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

- 94- Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur. 2016;28(1):3.
- 95- Anderson KS, Sammons RD, Leo GC, Sikorski JA, Benesi AJ, Johnson KA. Observation by 13C NMR of the EPSP synthase tetrahedral intermediate bound to the enzyme active site. Biochemistry. 1990;29(6):1460–5.
- 96-Thongprakaisang S, Thiantanawat A, Rangkadilok N, Suriyo T, Satayavivad J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol. 2013;59:129–36.
- 97- Kwiatkowska M, Reszka E, Woźniak K, Jabłońska E, Michałowicz J, Bukowska B. DNA damage and methylation induced by glyphosate in human peripheral blood mononuclear cells (in vitro study). Food Chem Toxicol. 2017;105:93–8.
- 98- Collotta M, Bertazzi PA, Bollati V. Epigenetics and pesticides. Toxicology. 2013;10(307):35–41.
- 99-Sato C, Kamijo Y, Yoshimura K, Ide T. Aseptic meningitis in association with glyphosate-surfactant herbicide poisoning. Clin Toxicol (Phila). 2011;49(2):118–20.
- 100-Martinez A, Al-Ahmad AJ. Effects of glyphosate and aminomethylphos phonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett. 2019;304:39–49.
- 101- Pandey A, Dhabade P, Kumarasamy A. Inflammatory effects of subacute exposure of roundup in rat liver and adipose tissue. Dose Response. 2019;17(2):1559325819843380.
- 102- Martínez M-A, Rodríguez J-L, Lopez-Torres B, Martínez M, Martínez-Lar rañaga M-R, Maximiliano J-E, et al. Use of human neuroblastoma SH-SY5Y cells to evaluate gyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int. 2020;135: 105414.

ISSN (print): 2706-6908, ISSN (online): 2706-6894

- 103- Ricciardi-Castagnoli P, Pirami L, Righi M, Sacerdote P, Locatelli V, Bianchi M, et al. Cellular sources and effects of tumor necrosis factor-alpha on pituitary cells and in the central nervous system. Ann N Y Acad Sci. 1990;594:156–68.
- 104-Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.
- 105- Lin Y-H, Pan Y-C, Lin S-H, Chen S-H. Development of short-form and screening cutoff point of the Smartphone Addiction Inventory (SPAI-SF). Int J Methods Psychiatr Res. 2017;26(2):e1525.
- 106- Chung IY, Benveniste EN. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. J Immunol. 1990;144(8):2999–3007.
- 107- Zhao M, Cribbs DH, Anderson AJ, Cummings BJ, Su JH, Wasserman AJ, et al. The induction of the TNFalpha death domain signaling pathway in Alzheimer's disease brain. Neurochem Res. 2003;28(2):307–18.
- 108- Tseng W-Y, Huang Y-S, Lin H-H, Luo S-F, McCann F, McNamee K, et al. TNFR signalling and its clinical implications. Cytokine. 2018;101:19–25.
- 109- Cheng X, Yang L, He P, Li R, Shen Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer's disease and non-demented patients. J Alzheimers Dis. 2010;19(2):621–30.
- 110-Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's dis ease. Nat Immunol. 2015;16(3):229–36.
- 111- Lukiw WJ. Gene expression profiling in fetal, aged, and Alzheimer hip pocampus: a continuum of stress-related signaling. Neurochem Res. 2004;29(6):1287–97.
- 112. Paouri E, Tzara O, Zenelak S, Georgopoulos S. Genetic deletion of tumor necrosis factor- α attenuates amyloid- β production and decreases amyloid plaque formation and glial response in the 5XFAD model of Alzheimer's Disease. J Alzheimers Dis. 2017;60(1):165–81.