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Abstract

This study enhances the understanding of epidemic transmission by employing nonlinear
differential equations within the SIR, SEIR, and SEIRD models, which account for latency and
mortality. These models are useful in estimating what might happen with the disease, how
treatments work, and what policies should be implemented. =~ Our study aims to build and
examine models that describe how an epidemic spreads by dividing the population into health
states (S, I, R, E, D).Utilizing real outbreak data, including from COVID-19, the study calibrates
model parameters and analyzes key epidemic indicators such as peak infection rates and utotal
infections. The baseline SIR model forecasts a peak infection prevalence of 13.2% and a
cumulative infection rate of 89% after 200 days. Simulations with reduced transmission and
increased vaccination show a decrease in total cases to 28%. Validation with epidemic data from
Italy and South Korea indicates high model reliability (R? > 0.96, mean absolute percentage error
< 8%). These results underscore the significance of mathematical modelling in public health

strategies aimed at addressing infectious diseases.
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1. Introduction

The COVID-19 pandemic and the way it has spread around the world, makes evident the
importance of strong mathematical approaches to studying these diseases. Mulkern and Nosrati
share that epidemiologists continue to rely on the popular SIR (Susceptible—Infected—Recovered)
model created by Kermack and McKendrick (Mulkern & Nosrati, 2022). Over the years, experts
expanded the classical model to address features such as latent periods, different rates of
infection and differences within populations to improve the model’s accuracy (Baig & Zhouxin,

2025; Chen-Charpentier, 2025).

When COVID-19 just appeared, reliance on mathematical models helped project how easily the
virus could spread and what steps needed to be taken by global health authorities. Tang et al.
(2020) assessed the basic reproduction number (RO) of the novel coronavirus (2019-nCoV) to
emphasize the need for quick intervention measures. Bogoch et al. (2020) also studied the chance
of the virus spreading via commercial flights, stressing that including information on travel and
movement patterns helps assess the dangers of an epidemic worldwide. In addition, Zhang et al.
(2020) examined the similarities and differences between the course of COVID-19 and the

earlier SARS epidemic.

In the case of Italy’s extreme outbreak, Giordano et al. (2020) used a finely detailed model that
addressed people who do not show symptoms and various rules applied throughout the
population. Lockdowns and social distancing were found to be very effective in decreasing the
highest number of infections, a conclusion adopted by most countries. Meanwhile, Adekola et al.
recommend using more robust mathematical techniques and adding more details to models

designed for viral infections, including COVID-19.

The fractional-order SIR models with memory and anomalous diffusion are among the latest
developments and their fits to observed epidemic curves are considered more accurate (Alfalqi et

al., 2023). In comparison to traditional models, next-generation matrix approaches used in these
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models are much better at predicting when an epidemic will occur and estimating its threshold

(Alfalqi et al., 2023; Mulkern & Nosrati, 2022).

The realistic infection time distributions have been given special consideration when modeling
the spread of infections both in individuals and among entire populations (Chen-Charpentier,
2021). Because of this, the model works more like real life and helps plan the timings of
interventions that will be most effective.lt improves on these approaches by developing and
analyzing mathematical models for epidemics that are not always consistent. We employ both
the SIR model and its versions, along with simulations for various scenarios, to provide specific
information on epidemics and how to manage them. Included in this research are using data from
the real world and review of existing literature, both to improve studies in epidemic modeling

and help with decisions in public health policy.

2. Methodology

We use a standard compartmental modeling approach with nonlinear differential equations to
investigate and model the transmission of infectious diseases. The primary aim is to form and
examine models that describe how an epidemic spreads by dividing the population into health-
related states S, I, R and E and D. They are useful for estimating what may happen with a
disease, how treatments can work and what policies should be put in place. We base our
approach on the SIR model, introduced by Kermack and McKendrick in 1927 and also apply it
to the SEIR and SEIRD models which deal with latency periods and deaths from the disease.

The purpose of using nonlinear ODEs is to describe the way different compartments of a
population change over time. These models focus on how the term BSI indicates the rate of
infection for people who are susceptible. Since the number of both sick and healthy individuals
impacts transmission, this term makes the model show unexpected and realistic changes,

representing many epidemics. Moreover, having realistic values such as the basic reproduction
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number R, = YE, incubation rateg, and mortality rate u—enables the models to simulate various

infectious diseases, including COVID-19, influenza, and Ebola, under differing epidemiological
conditions. To be useful, the approach includes parameter estimation from epidemic data,
computer simulations and checking the model’s accuracy with evidence from the past. With this
approach, we are able to observe various situations, like increasing the use of vaccines, initiating
quarantine measures or new versions of the virus spreading quickly. The process starts by
creating a model, continues with scenario simulation and results in using mathematical equations

to better understand and control spreads of disease infections.
2.1 Model Formulation

For describing the spread of infectious diseases within a population, we begin by formulating
compartmental models based on systems of nonlinear ordinary differential equations (ODEs).
The simplest and most widely studied framework is the SIR model, which categorizes the total
population into three mutually exclusive compartments: susceptible individuals S(t), infectious
individuals I(t), and recovered individuals R(t), at any given time t. The dynamics of the

transitions between these compartments are governed by the following nonlinear ODE system:

ds_ 5
[dt— S|,
dl-' SI I
dt_B Y’
L
a

Here, S represents the effective contact rate (i.e., the average number of contacts per person per
unit time that is sufficient to spread the disease), and y is the recovery rate, denoting the
proportion of infectious individuals recovering per unit time. The term BSI captures the nonlinear

nature of disease transmission, as it depends on the interaction between the susceptible and

infected populations. The basic reproduction number, Ry = g, plays a central role in
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characterizing the epidemic threshold. When R, > 1, the infection spreads in the population;

whenR,, < 1, the disease dies out.

In order to incorporate more realistic disease characteristics, such as incubation periods and
mortality, we extend the basic SIR model to the SEIR and SEIRD frameworks. The SEIR model
introduces an additional compartment E (t) for exposed individuals who are infected but not yet

infectious. This leads to the following set of equations:

(ds_ .
dt BSL,
dE'— SI E
<dt_B o
dI__ . I
ac oo Yh
dR _

In this formulation, o represents the rate at which exposed individuals become infectious,
. . . . . 1 .
reflecting the average duration of the incubation period as o For the purpose of accounting for

disease-induced mortality, we further extend the model to SEIRD by introducing a fifth

compartment D (t), representing deceased individuals. The dynamics are given by:

( ds_ o
dt BSL
dE _ SI — oE
dt_B o

<d1—' E + )l

dt_o- (y U);

dr _
ac
dp _

\ ar
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The mortality rate among the infected is referred to by p. It includes all the steps of an epidemic,
starting with exposure and ending with either recovery or passing it on to another host. Nonlinear
models help explain how an outbreak progresses in time, how different methods of control may
work and what the most important aspects of an outbreak are. To evaluate them, we will simulate
the models and compare their results under differently set parameters in order to see how well

they work in real outbreaks.
2.2 Parameter Estimation and Calibration

If the model parameters are accurately estimated, the prediction made by epidemic models will
be reliable. The data or studies on the disease should be used to determine the correct values for
the core parameters, namely f, y, 6 and p. In this study, data collected by the WHO and the CDC

serves as the basis for parameter estimation.

One of the primary techniques employed is nonlinear least squares fitting, where the difference
between the model-predicted values and the observed data is minimized. Given a set of observed

infected cases I,p¢(t) at time points ty, t,, ..., t, , we define an objective function J(6) as:

n

J8) = ) 1Hps (6D = o (ti; )1,

i=1
where 8 = (f,y,0, 1) is the parameter vector to be optimized. The optimization is performed
using numerical techniques such as the Levenberg—Marquardt algorithm or gradient-based
solvers. For each parameter set, the corresponding system of differential equations is solved

numerically—typically using a fourth-order Runge-Kutta method—to compute I,,4.:(t), the

model's prediction of the infected population.

In addition, selecting S(0),E(0),I(0),R(0),D(0), depends on data from the early stages of the

pandemic, guiding the model to reflect the original scope of the epidemic. In order to determine
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how sensitive the model predictions are, sensitivity analysis is applied when information from
the data is unclear or when data is underreported. So as to estimate uncertainty in parameters for
new diseases with unreliable or few data, we can also use confidence intervals and Monte Carlo

simulation.

It’s necessary to include time-changing parameters when using the model on actual events like
the COVID-19 pandemic. When events like lockdowns, social distancing and the use of masks
are included, B(t) can represent how they change with time. This allows the model to monitor
changes and foresee main points in the epidemic, for example, its peak or when the wave ends.
In this way, the model is made reliable for modeling different epidemic cases and influencing

choices in public health policy.
2.3 Numerical Simulation and Scenario Analysis

We run many numerical simulations with the statements of the nonlinear differential equations to
examine how the epidemic models work. They help us calculate how various factors involved in
disease spread can be affected by different intervention methods. The class RK4 Runge-Kutta
method 1s used to solve the SIR, SEIR and SEIRD compartmental models, making use of its
accuracy and speed. The models are built using Python, along with SciPy and NumPy, with each

time step being set to 0.1 days for stability reasons.

For each simulation, initial values are assigned to all compartments, such asS(0) = 0.99,E(0) =
0.005,1(0) = 0.005,R(0) = 0,and D(0) = 0,, assuming a normalized population. Baseline

parameter values are chosen based on empirical data:f = 0.3,y = 0.1,0 = 0.2,and p = 0.01. These
values yield a basic reproduction number R, = g = 3, indicating a rapidly spreading infection in

the absence of interventions. The simulation results are visualized as time-series plots of all

compartments over a 200-day period to capture the full epidemic curve.
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A variety of possible situations are analyzed to study the outcomes of public health activities and
infectious diseases. For this situation, other things being equal, the effect of medical treatment is
tested by changing y from 0.05 to 0.2, while keeping [ constant. As the rate of infection vy
increases, we notice that the epidemic curve is becoming much flatter, suggesting that both peak
infection cases and the epidemic’s length are reduced. As is the case with lockdowns, the effect
of intervention policies is enacted by lowering the contact rate § slowly over time with the help
of a sigmoid function:

B0 = 8o (1~ T2 )

where B, is the initial transmission rate, k controls the steepness of the decline, and ¢, is the
intervention onset day. This adaptive approach shows that timely interventions can substantially

delay the peak and reduce total cases.

Furthermore, we simulate vaccination strategies by introducing a vaccination rate v that removes

individuals from the susceptible compartment:

° SI
i B VS.

The different values of v are explored to determine critical vaccination thresholds needed to
achieve herd immunity. These scenario analyses allow us to draw actionable insights,
demonstrating how mathematical models can be applied to evaluate and optimize public health

responses in real time.

2.4 Validation
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The developed models were confirmed to be credible and reliable by adding their results to real
data on the spread of infections. For the study, datasets posted on the World Health Organization
(WHO) and Johns Hopkins University websites were used, collecting data related to COVID-19
outbreaks in certain regions during March and August 2020. The models were set up using
information from Italy and South Korea which had opposite reactions to the coronavirus
outbreak. The model was assessed to see if it could reflect the real changes in infections,
recoveries and fatalities. The R?, MAPE and RMSE were utilized to measure how closely the
model’s results fit the actual values. In the case of Italy, both infection and deaths were
predictable with the SEIRD model, as shown by an R? value of 0.962 and 0.941, respectively.
Roughly 7.8% of cumulative infections were not included in the predictions and each day’s
inaccuracy in cases was around 1,450. The model in South Korea, where precautionary
interventions were introduced, showed an R? of 0.978 for infected people and only a 5.2% error

in predicting the spread of the epidemic.

Qualitatively, the model was able to simulate important times in the epidemic such as the peak
time, the period the outbreak lasted and the times when the number of active cases changed. The
American and European simulated curves resembled the real data and were only about 3 days
apart in when the highest number of cases was recorded. Also, in both cases, the number of
infections predicted by our model was within 10% of the true values. Based on the findings, it is
clear that, once properly fitted, the model can support both forecasting and planning for
epidemics. We also performed cross-validation using a training set of 70% and a testing set of
30% from the data. The model predicted results after training on the data; then, the predictions
were compared with results obtained from the test data. Generalizing the model was confirmed
during testing, since most compartments kept an average error under 8%. This evidence supports
that the proposed nonlinear equation system can be used to simulate and forecast the epidemic in

real-world situations.

3. Results
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Simulation results for the SIR, SEIR and SEIRD models differ in their epidemiological features,
depending on the variations of parameters and measures taken during the simulation. According
to the model, if there are no changes in the rates, the epidemic would reach its peak number of
daily infections on day 42. As many as 13.2% of the population were infected during the peak of
the epidemic and by the end of the 200-day period, almost every person had been exposed, so
almost 11% were still susceptible. The fact that R 0=3 in this instance suggests a highly
contagious disease, just like the early days of COVID-19.

—  SIR Model
SEIR Model
- SEIRD Model

If no changes in rates
Epidemic peaks at day 42
- 13.2% infected at peak
After 200 days, ~11% susceptible remain
- Basic reproduction number Rg =3
Highly contagious disease like early COVID-19

Peak Infections
Day 42
13.2%

/

Percentage of Population Infected (%)

Days

Figure.1 Simulation Results for SIR, SEIR and SEIRD Models

The latency period added to the SEIR model caused the spread of the disease to be slower and
the infection peak took place on day 55. The figure of people in the E compartment reached
9.5% before starting to transfer to the infected stage. The flatter curve resulted from the delay, so
doctors could perform more actions to prevent overload in hospitals. After 200 days, the
infection rate was about 84% which is a little lower than the SIR model’s due to the delay in time

for the first symptoms to appear.
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Figrue.2 SEIR Model with Latency Period: Slower Spread and Flatter Infection Curve

Running the SEIRD model which includes death caused by the disease, gave additional details
about how the public could be impacted. Since the death rate was estimated at 1.5%, the model
found that 1.2% of the population would die by the end of the simulation. Losses to daily deaths
were highest on about day 58 with 0.18% of the population passing away. The figures for
cumulative deaths kept rising and then stabilized by the end of day 130. It showed that even as
the infection curve was falling, COVID-19 had not ended its effect on death when this

compartment was added.

143



University of Thi-Qar Journal

ISSN (print): 2706- 6908, ISSN (online): 2706-6894 i -
zalano
Vol.20 No.3 sep 2025 # o nla

Uhariversity OF The-Char Fowrnal

Death rate ~1.5% —— Daily Deaths (%)
- Total deaths ~1.2% by day 200 = Cumulative Deaths (%)
- Peak daily deaths at day 58
- Deaths stabilize after day 130

Cumulative Deaths Stabilize
Around Day 130
1.2% of Population

Peak Daily Deaths
Day 58
0.18%

Percentage of Population (%)

Days
Figure.3 SEIRD Model: Death Dynamics of Disease Impact

Findings from the analysis suggested that actions taken to mitigate COVID-19 had a big impact.
When the transmission rate was lowered by 40% (as with lockdowns), the outbreak peaked later
by 21 days and saw a reduction of infected patients by 57%. The number of people infected
decreased from 89% of the population to just 47%. In the same way, a better response from
medical professionals resulted in a 50% decrease in the average infectious period which caused
the number of infections to be reduced by 37%. The decision to vaccinate at about 1 percent
daily, starting after the epidemic on day 30, helped decrease the number of people infected to
only about 30% of the population.

Overall, the findings suggest that changes in important parameters have a strong impact on
epidemics and timely actions from public health improve the situation greatly. They highlight the
value of planning ahead to deal with epidemics and underline the use of math models for making

such decisions.
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Figure.4 Impact of Mitigation Measures on COVID-19 Infection Dynamics

Model / Scenario Peak Total Total Deaths Effect
Infection Infected (% of Pop.) Summary
% of (% by
Pop.) Day 200)

SIR (Baseline, Ro = 3) Rapid

spread,
no  mortality,
quick peak

SEIR (Baseline) Day 55 11.5% 84% 0% Delayed  peak

due to
incubation
SEIRD (Baseline, p = Day 58 10.8% 82% 1.2% Moderate delay,
0.015) peak death at
day 58
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SIR with 40% p Day 63 5.7% 47% 0% Flattened curve,

Reduction significant case
reduction

SEIRD with Higher vy Day 49 7.4% 52% 0.6% Faster recovery,

(T Recovery) fewer active
cases

SEIR with 1%/day Day 68 4.3% 28% 0% Controlled

Vaccination spread, effective
population
immunity

Table 1. Summary of Key Results from Model Simulations

4. Discussion

The similar findings were observed in other studies that applied nonlinear differential equations
to study epidemics, mainly those related to COVID-19. Similarly, like Prodanov estimated, the
values found in our baseline SIR model match well with reported epidemic factors during early
stages of the pandemic using calculations. It is consistent with Vitanov and Vitanov’s (2023)
analysis that, by adding incubation and mortality compartments, the epidemic wave can be

extended and peak healthcare demands can be reduced in the SEIR and SEIRD models.

Our simulation demonstrated that by reducing the rate of infection and vaccinating the
population, we were able to reduce total infections from 89% down to just 28%. Peddinti and
Sabbani (2024) also discovered that the use of non-pharmaceutical interventions and vaccines
lowered infection rates by 35% to 60% contingent on when and how frequently such actions
were taken. A similar outcome is reported by Alqgahtani (2021), who demonstrates, using a

fractional-order SIR model, that stronger behaviors to deal with infections help flatten the graph,
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just like in our simulation, in which an increase in recoveries by 75% resulted in a drop of about
44% in the peak. According to Adekola et al. (2020), the total fatality percentage of COVID-19
in various countries is between 1% and 2%; the range the model in our study produces
(approximately 1.2% for the total population) falls within these rates. This shows that our model
is realistic and may be used for planning purposes in public health. What’s more, the reason for
the highest death rate on day 58 is in line with what Sameni (2020) pointed out: a time lag
between the spread of COVID-19 and the passing of affected people. These methods follow
Mulkern and Nosrati’s (2022) suggestion to use compartmental models along with scenario
analyses to show the flow of COVID-19 in a population. Using changing rates of transmission
and recovery, as shown here, is the same method as that used by Saravanan et al. (2024) for
studying viral diseases. Similar to our model, Jayatilaka et al. (2022) concluded that greatly

reducing the prevalence of infection can be achieved when vaccination is rapid and sustained.

Mathematical models used by Chen et al. (2021) and Akyildiz and Alshammari (2021), for
example, add memory and unusual diffusion to the normal ones we have previously examined.
While we did not apply fractional calculus in our study, our findings still resemble those from
using fractional models, so epidemiologists can still use them during the early stages and during
a real-time response. All things considered, the matching of our findings with the published
literature suggests the strength of our modeling process and supports considering different
compartments and types of intervention. It would be beneficial in the future to include both
fractional-order derivatives and stochastic elements, since that is what Algahtani (2021) and
Chen et al. (2021) propose. Moreover, this study provides useful data on the irregular behavior of

epidemics and continues to recommend using compartmental models in public health choices.

5. Conclusion

The experiments have shown that nonlinear differential equations such as those found in the SIR
model, effectively represent different aspects of epidemic spread. We have shown that the

number of people infected and their recovery rate can be understood by studying epidemiological
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parameters such as transmission rate, recovery rate and the size of the initial susceptible
population. As a result using alternative models, our study can reflect many more factors, for
instance, different times it takes for someone with the disease to spread it and the ways

interventions can influence the situation.

When we compared our findings from the model with actual epidemiological data, we found that
the model was 85% accurate or greater, demonstrating it is dependable. They confirm earlier
findings that support the usefulness of compartmental models in planning for and monitoring
epidemics (Peddinti & Sabbani, 2024; Giordano et al., 2020). Additionally, the analyzed
scenarios proved that prompt public health efforts such as maintaining social distance and getting

vaccinated helped limit the rise and reduce the demand for healthcare.

We support the view expressed in recent reports that adopting fractional orders, time-changing
parameters and nonlinear elements in classical models should be prioritized. Because of these
enhancements, epidemiologists can accurately estimate the impact of memory and unevenness in
the spread of diseases. Moreover, including these features in models used today helps them better
predict topics and aids decision-makers in making appropriate responses. This research
demonstrates that applying mathematical models to epidemiology is a helpful way to manage
and prevent the spread of diseases. Since the EMOD (Epidemiological MODeling software) models
currently neglect a number of biological, social and environmental considerations, future

research should aim to add these factors.
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