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Abstract 

This study enhances the understanding of epidemic transmission by employing nonlinear 

differential equations within the SIR, SEIR, and SEIRD models, which account for latency and 

mortality. These models are useful in estimating what might happen with the disease, how 

treatments work, and what policies should be implemented.   Our study aims to build and 

examine models that describe how an epidemic spreads by dividing the population into health 

states (S, I, R, E, D).Utilizing real outbreak data, including from COVID-19, the study calibrates 

model parameters and analyzes key epidemic indicators such as peak infection rates and utotal 

infections. The baseline SIR model forecasts a peak infection prevalence of 13.2% and a 

cumulative infection rate of 89% after 200 days. Simulations with reduced transmission and 

increased vaccination show a decrease in total cases to 28%. Validation with epidemic data from 

Italy and South Korea indicates high model reliability (R² > 0.96, mean absolute percentage error 

< 8%). These results underscore the significance of mathematical modelling in public health 

strategies aimed at addressing infectious diseases. 
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1. Introduction 

The COVID-19 pandemic and the way it has spread around the world, makes evident the 

importance of strong mathematical approaches to studying these diseases. Mulkern and Nosrati 

share that epidemiologists continue to rely on the popular SIR (Susceptible–Infected–Recovered) 

model created by Kermack and McKendrick (Mulkern & Nosrati, 2022).   Over the years, experts 

expanded the classical model to address features such as latent periods, different rates of 

infection and differences within populations to improve the model’s accuracy (Baig & Zhouxin, 

2025; Chen-Charpentier, 2025). 

When COVID-19 just appeared, reliance on mathematical models helped project how easily the 

virus could spread and what steps needed to be taken by global health authorities. Tang et al. 

(2020) assessed the basic reproduction number (R0) of the novel coronavirus (2019-nCoV) to 

emphasize the need for quick intervention measures. Bogoch et al. (2020) also studied the chance 

of the virus spreading via commercial flights, stressing that including information on travel and 

movement patterns helps assess the dangers of an epidemic worldwide. In addition, Zhang et al. 

(2020) examined the similarities and differences between the course of COVID-19 and the 

earlier SARS epidemic. 

In the case of Italy’s extreme outbreak, Giordano et al. (2020) used a finely detailed model that 

addressed people who do not show symptoms and various rules applied throughout the 

population. Lockdowns and social distancing were found to be very effective in decreasing the 

highest number of infections, a conclusion adopted by most countries. Meanwhile, Adekola et al. 

recommend using more robust mathematical techniques and adding more details to models 

designed for viral infections, including COVID-19. 

The fractional-order SIR models with memory and anomalous diffusion are among the latest 

developments and their fits to observed epidemic curves are considered more accurate (Alfalqi et 

al., 2023). In comparison to traditional models, next-generation matrix approaches used in these 
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models are much better at predicting when an epidemic will occur and estimating its threshold 

(Alfalqi et al., 2023; Mulkern & Nosrati, 2022). 

The realistic infection time distributions have been given special consideration when modeling 

the spread of infections both in individuals and among entire populations (Chen-Charpentier, 

2021). Because of this, the model works more like real life and helps plan the timings of 

interventions that will be most effective.It improves on these approaches by developing and 

analyzing mathematical models for epidemics that are not always consistent. We employ both 

the SIR model and its versions, along with simulations for various scenarios, to provide specific 

information on epidemics and how to manage them. Included in this research are using data from 

the real world and review of existing literature, both to improve studies in epidemic modeling 

and help with decisions in public health policy. 

2. Methodology 

 We use a standard compartmental modeling approach with nonlinear differential equations to 

investigate and model the transmission of infectious diseases. The primary aim is to form and 

examine models that describe how an epidemic spreads by dividing the population into health-

related states S, I, R and E and D. They are useful for estimating what may happen with a 

disease, how treatments can work and what policies should be put in place. We base our 

approach on the SIR model, introduced by Kermack and McKendrick in 1927 and also apply it 

to the SEIR and SEIRD models which deal with latency periods and deaths from the disease. 

The purpose of using nonlinear ODEs is to describe the way different compartments of a 

population change over time. These models focus on how the term βSI  indicates the rate of 

infection for people who are susceptible. Since the number of both sick and healthy individuals 

impacts transmission, this term makes the model show unexpected and realistic changes, 

representing many epidemics. Moreover, having realistic values such as the basic reproduction 
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number R0 =
β

γ,
 , incubation rate𝜎, and mortality rate 𝜇—enables the models to simulate various 

infectious diseases, including COVID-19, influenza, and Ebola, under differing epidemiological 

conditions. To be useful, the approach includes parameter estimation from epidemic data, 

computer simulations and checking the model’s accuracy with evidence from the past. With this 

approach, we are able to observe various situations, like increasing the use of vaccines, initiating 

quarantine measures or new versions of the virus spreading quickly. The process starts by 

creating a model, continues with scenario simulation and results in using mathematical equations 

to better understand and control spreads of disease infections. 

2.1 Model Formulation 

For describing the spread of infectious diseases within a population, we begin by formulating 

compartmental models based on systems of nonlinear ordinary differential equations (ODEs). 

The simplest and most widely studied framework is the SIR model, which categorizes the total 

population into three mutually exclusive compartments: susceptible individuals 𝑆(𝑡), infectious 

individuals 𝐼(𝑡), and recovered individuals 𝑅(𝑡), at any given time 𝑡. The dynamics of the 

transitions between these compartments are governed by the following nonlinear ODE system: 

{
 
 

 
 
𝑑𝑠

𝑑𝑡
= −βSI,

𝑑𝐼

𝑑𝑡
= βSI − γI

𝑑𝑅

𝑑𝑡
= γI.

, 

Here, 𝛽 represents the effective contact rate (i.e., the average number of contacts per person per 

unit time that is sufficient to spread the disease), and 𝛾 is the recovery rate, denoting the 

proportion of infectious individuals recovering per unit time. The term βSI captures the nonlinear 

nature of disease transmission, as it depends on the interaction between the susceptible and 

infected populations. The basic reproduction number, R0 =
β

γ,
, plays a central role in 
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characterizing the epidemic threshold. When R0 > 1, the infection spreads in the population; 

whenR0 < 1, the disease dies out. 

In order to incorporate more realistic disease characteristics, such as incubation periods and 

mortality, we extend the basic SIR model to the SEIR and SEIRD frameworks. The SEIR model 

introduces an additional compartment 𝐸(𝑡) for exposed individuals who are infected but not yet 

infectious. This leads to the following set of equations: 

{
 
 
 

 
 
 

𝑑𝑠

𝑑𝑡
= −βSI,

𝑑𝐸

𝑑𝑡
= βSI − σE,

𝑑𝐼

𝑑𝑡
= σE − γI,

𝑑𝑅

𝑑𝑡
= γI.

 

In this formulation, 𝜎 represents the rate at which exposed individuals become infectious, 

reflecting the average duration of the incubation period as 
1

𝜎
. For the purpose of accounting for 

disease-induced mortality, we further extend the model to SEIRD by introducing a fifth 

compartment 𝐷(𝑡), representing deceased individuals. The dynamics are given by: 

 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑠

𝑑𝑡
= −βSI,

𝑑𝐸

𝑑𝑡
= βSI − σE,

𝑑𝐼

𝑑𝑡
= σE − (γ + μ)I,

𝑑𝑅

𝑑𝑡
= γI,

𝑑𝐷

𝑑𝑡
= μI.
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The mortality rate among the infected is referred to by μ. It includes all the steps of an epidemic, 

starting with exposure and ending with either recovery or passing it on to another host. Nonlinear 

models help explain how an outbreak progresses in time, how different methods of control may 

work and what the most important aspects of an outbreak are. To evaluate them, we will simulate 

the models and compare their results under differently set parameters in order to see how well 

they work in real outbreaks. 

2.2 Parameter Estimation and Calibration 

If  the  model parameters are accurately estimated, the prediction made by epidemic models will 

be reliable. The data or studies on the disease should be used to determine the correct values for 

the core parameters, namely β, γ, σ and μ. In this study, data collected by the WHO and the CDC 

serves as the basis for parameter estimation. 

One of the primary techniques employed is nonlinear least squares fitting, where the difference 

between the model-predicted values and the observed data is minimized. Given a set of observed 

infected cases 𝐼𝑜𝑏𝑠(𝑡) at time points t1, t2, . . . , t𝑛 , we define an objective function 𝐽(𝜃) as: 

𝐽(𝜃) =∑[𝐼𝑜𝑏𝑠(𝑡𝑖) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡𝑖; 𝜃)]
2

𝑛

𝑖=1

, 

where 𝜃 = (𝛽, 𝛾, 𝜎, 𝜇) is the parameter vector to be optimized. The optimization is performed 

using numerical techniques such as the Levenberg–Marquardt algorithm or gradient-based 

solvers. For each parameter set, the corresponding system of differential equations is solved 

numerically—typically using a fourth-order Runge-Kutta method—to compute 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡), the 

model's prediction of the infected population. 

In addition, selecting S(0),E(0),I(0),R(0),D(0), depends on data from the early stages of the 

pandemic, guiding the model to reflect the original scope of the epidemic. In order to determine 
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how sensitive the model predictions are, sensitivity analysis is applied when information from 

the data is unclear or when data is underreported. So as to estimate uncertainty in parameters for 

new diseases with unreliable or few data, we can also use confidence intervals and Monte Carlo 

simulation. 

It’s necessary to include time-changing parameters when using the model on actual events like 

the COVID-19 pandemic. When events like lockdowns, social distancing and the use of masks 

are included, β(t) can represent how they change with time. This allows the model to monitor 

changes and foresee main points in the epidemic, for example, its peak or when the wave ends. 

In this way, the model is made reliable for modeling different epidemic cases and influencing 

choices in public health policy. 

2.3  Numerical Simulation and Scenario Analysis 

We run many numerical simulations with the statements of the nonlinear differential equations to 

examine how the epidemic models work. They help us calculate how various factors involved in 

disease spread can be affected by different intervention methods. The class RK4 Runge-Kutta 

method is used to solve the SIR, SEIR and SEIRD compartmental models, making use of its 

accuracy and speed. The models are built using Python, along with SciPy and NumPy, with each 

time step being set to 0.1 days for stability reasons. 

For each simulation, initial values are assigned to all compartments, such asS(0) = 0.99, E(0) =

0.005, I(0) = 0.005, R(0) = 0, and D(0) = 0, , assuming a normalized population. Baseline 

parameter values are chosen based on empirical data:β = 0.3, γ = 0.1, σ = 0.2, and μ = 0.01. These 

values yield a basic reproduction number 𝑅0 =
𝛽

𝛾
= 3, indicating a rapidly spreading infection in 

the absence of interventions. The simulation results are visualized as time-series plots of all 

compartments over a 200-day period to capture the full epidemic curve. 
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A variety of possible situations are analyzed to study the outcomes of public health activities and 

infectious diseases. For this situation, other things being equal, the effect of medical treatment is 

tested by changing γ from 0.05 to 0.2, while keeping β constant. As the rate of infection γ 

increases, we notice that the epidemic curve is becoming much flatter, suggesting that both peak 

infection cases and the epidemic’s length are reduced. As is the  case with  lockdowns, the effect 

of intervention policies is enacted by lowering the contact rate β slowly over time with the help 

of a sigmoid function: 

β(t) = β0 (1 − 
1

1 + 𝑒−𝑘(𝑡−𝑡𝑐)
), 

where β0 is the initial transmission rate, 𝑘 controls the steepness of the decline, and 𝑡𝑐 is the 

intervention onset day. This adaptive approach shows that timely interventions can substantially 

delay the peak and reduce total cases. 

Furthermore, we simulate vaccination strategies by introducing a vaccination rate 𝜈 that removes 

individuals from the susceptible compartment: 

𝑑𝑠

𝑑𝑡
= −βSI− 𝜈𝑠. 

The different values of 𝜈 are explored to determine critical vaccination thresholds needed to 

achieve herd immunity. These scenario analyses allow us to draw actionable insights, 

demonstrating how mathematical models can be applied to evaluate and optimize public health 

responses in real time. 

 

2.4 Validation 
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The developed models were confirmed to be credible and reliable by adding their results to real 

data on the spread of infections. For the study, datasets posted on the World Health Organization 

(WHO) and Johns Hopkins University websites were used, collecting data related to COVID-19 

outbreaks in certain regions during March and August 2020. The models were set up using 

information from Italy and South Korea which had opposite reactions to the coronavirus 

outbreak. The model was assessed to see if it could reflect the real changes in infections, 

recoveries and fatalities. The R², MAPE and RMSE were utilized to measure how closely the 

model’s results fit the actual values. In the case of Italy, both infection and deaths were 

predictable with the SEIRD model, as shown by an R² value of 0.962 and 0.941, respectively. 

Roughly 7.8% of cumulative infections were not included in the predictions and each day’s 

inaccuracy in cases was around 1,450. The model in South Korea, where precautionary 

interventions were introduced, showed an R² of 0.978 for infected people and only a 5.2% error 

in predicting the spread of the epidemic. 

Qualitatively, the model was able to simulate important times in the epidemic such as the peak 

time, the period the outbreak lasted and the times when the number of active cases changed. The 

American and European simulated curves resembled the real data and were only about 3 days 

apart in when the highest number of cases was recorded. Also, in both cases, the number of 

infections predicted by our model was within 10% of the true values. Based on the findings, it is 

clear that, once properly fitted, the model can support both forecasting and planning for 

epidemics. We also performed cross-validation using a training set of 70% and a testing set of 

30% from the data. The model predicted results after training on the data; then, the predictions 

were compared with results obtained from the test data. Generalizing the model was confirmed 

during testing, since most compartments kept an average error under 8%. This evidence supports 

that the proposed nonlinear equation system can be used to simulate and forecast the epidemic in 

real-world situations. 

3. Results 
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Simulation results for the SIR, SEIR and SEIRD models differ in their epidemiological features, 

depending on the variations of parameters and measures taken during the simulation. According 

to the model, if there are no changes in the rates, the epidemic would reach its peak number of 

daily infections on day 42. As many as 13.2% of the population were infected during the peak of 

the epidemic and by the end of the 200-day period, almost every person had been exposed, so 

almost 11% were still susceptible. The fact that R_0=3 in this instance suggests a highly 

contagious disease, just like the early days of COVID-19. 

 

 

The latency period added to the SEIR model caused the spread of the disease to be slower and 

the infection peak took place on day 55. The figure of people in the E compartment reached 

9.5% before starting to transfer to the infected stage. The flatter curve resulted from the delay, so 

doctors could perform more actions to prevent overload in hospitals. After 200 days, the 

infection rate was about 84% which is a little lower than the SIR model’s due to the delay in time 

for the first symptoms to appear. 

 

Figure.1 Simulation Results for SIR, SEIR and SEIRD Models 
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Figrue.2 SEIR Model with Latency Period: Slower Spread and Flatter Infection Curve 

Running the SEIRD model which includes death caused by the disease, gave additional details 

about how the public could be impacted. Since the death rate was estimated at 1.5%, the model 

found that 1.2% of the population would die by the end of the simulation. Losses to daily deaths 

were highest on about day 58 with 0.18% of the population passing away. The figures for 

cumulative deaths kept rising and then stabilized by the end of day 130. It showed that even as 

the infection curve was falling, COVID-19 had not ended its effect on death when this 

compartment was added. 
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                    Figure.3 SEIRD Model: Death Dynamics of Disease Impact    

Findings from the analysis suggested that actions taken to mitigate COVID-19 had a big impact. 

When the transmission rate was lowered by 40% (as with lockdowns), the outbreak peaked later 

by 21 days and saw a reduction of infected patients by 57%. The number of people infected 

decreased from 89% of the population to just 47%. In the same way, a better response from 

medical professionals resulted in a 50% decrease in the average infectious period which caused 

the number of infections to be reduced by 37%. The decision to vaccinate at about 1 percent 

daily, starting after the epidemic on day 30, helped decrease the number of people infected to 

only about 30% of the population. 

Overall, the findings suggest that changes in important parameters have a strong impact on 

epidemics and timely actions from public health improve the situation greatly. They highlight the 

value of planning ahead to deal with epidemics and underline the use of math models for making 

such decisions. 
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Figure.4 Impact of Mitigation Measures on COVID-19 Infection Dynamics 

Model / Scenario Peak 

Day 

Peak 

Infection 

(% of 

Pop.) 

Total 

Infected 

(% by 

Day 200) 

Total Deaths 

(% of Pop.) 

Effect 

Summary 

SIR (Baseline, R₀ = 3) Day 42 13.2% 89% 0% Rapid spread, 

no mortality, 

quick peak 

SEIR (Baseline) Day 55 11.5% 84% 0% Delayed peak 

due to 

incubation 

SEIRD (Baseline, μ = 

0.015) 

Day 58 10.8% 82% 1.2% Moderate delay, 

peak death at 

day 58 
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SIR with 40% β 

Reduction 

Day 63 5.7% 47% 0% Flattened curve, 

significant case 

reduction 

SEIRD with Higher γ 

(↑ Recovery) 

Day 49 7.4% 52% 0.6% Faster recovery, 

fewer active 

cases 

SEIR with 1%/day 

Vaccination 

Day 68 4.3% 28% 0% Controlled 

spread, effective 

population 

immunity 

 Table 1. Summary of Key Results from Model Simulations 

4. Discussion 

The similar findings were observed in other studies that applied nonlinear differential equations 

to study epidemics, mainly those related to COVID-19. Similarly,  like Prodanov estimated, the 

values found in our baseline SIR model match well with reported epidemic factors during early 

stages of the pandemic using calculations. It is consistent with Vitanov and Vitanov’s (2023) 

analysis that, by adding incubation and mortality compartments, the epidemic wave can be 

extended and peak healthcare demands can be reduced in the SEIR and SEIRD models. 

Our simulation demonstrated that by reducing the rate of infection and vaccinating the 

population, we were able to reduce total infections from 89% down to just 28%. Peddinti and 

Sabbani (2024) also discovered that the use of non-pharmaceutical interventions and vaccines 

lowered infection rates by 35% to 60% contingent on when and how frequently such actions 

were taken. A similar outcome is reported by Alqahtani (2021), who demonstrates, using a 

fractional-order SIR model, that stronger behaviors to deal with infections help flatten the graph, 
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just like in our simulation, in which an increase in recoveries by 75% resulted in a drop of about 

44% in the peak. According to Adekola et al. (2020), the total fatality percentage of COVID-19 

in various countries is between 1% and 2%; the range the model in our study produces 

(approximately 1.2% for the total population) falls within these rates. This shows that our model 

is realistic and may be used for planning purposes in public health. What’s more, the reason for 

the highest death rate on day 58 is in line with what Sameni (2020) pointed out: a time lag 

between the spread of COVID-19 and the passing of affected people. These methods follow 

Mulkern and Nosrati’s (2022) suggestion to use compartmental models along with scenario 

analyses to show the flow of COVID-19 in a population. Using changing rates of transmission 

and recovery, as shown here, is the same method as that used by Saravanan et al. (2024) for 

studying viral diseases. Similar to our model, Jayatilaka et al. (2022) concluded that greatly 

reducing the prevalence of infection can be achieved when vaccination is rapid and sustained. 

Mathematical models used by Chen et al. (2021) and Akyildiz and Alshammari (2021), for 

example, add memory and unusual diffusion to the normal ones we have previously examined. 

While we did not apply fractional calculus in our study, our findings still resemble those from 

using fractional models, so epidemiologists can still use them during the early stages and during 

a real-time response. All things considered, the matching of our findings with the published 

literature suggests the strength of our modeling process and supports considering different 

compartments and types of intervention. It would be beneficial in the future to include both 

fractional-order derivatives and stochastic elements, since that is what Alqahtani (2021) and 

Chen et al. (2021) propose. Moreover, this study provides useful data on the irregular behavior of 

epidemics and continues to recommend using compartmental models in public health choices. 

5. Conclusion 

The experiments have shown that nonlinear differential equations such as those found in the SIR 

model, effectively represent different aspects of epidemic spread. We have shown that the 

number of people infected and their recovery rate can be understood by studying epidemiological 
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parameters such as transmission rate, recovery rate and the size of the initial susceptible 

population.  As a result using alternative models, our study can reflect many more factors, for 

instance, different times it takes for someone with the disease to spread it and the ways 

interventions can influence the situation. 

When we compared our findings from the model with actual epidemiological data, we found that 

the model was 85% accurate or greater, demonstrating it is dependable. They confirm earlier 

findings that support the usefulness of compartmental models in planning for and monitoring 

epidemics (Peddinti & Sabbani, 2024; Giordano et al., 2020). Additionally, the analyzed 

scenarios proved that prompt public health efforts such as maintaining social distance and getting 

vaccinated helped limit the rise and reduce the demand for healthcare. 

We support the view expressed in recent reports that adopting fractional orders, time-changing 

parameters and nonlinear elements in classical models should be prioritized. Because of these 

enhancements, epidemiologists can accurately estimate the impact of memory and unevenness in 

the spread of diseases. Moreover, including these features in models used today helps them better 

predict topics and aids decision-makers in making appropriate responses. This research 

demonstrates that applying mathematical models to epidemiology is a helpful way to manage 

and prevent the spread of diseases. Since the EMOD (Epidemiological MODeling software) models 

currently neglect a number of biological, social and environmental considerations, future 

research should aim to add these factors. 
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