F-CONTINUOUS FUNCTIONS AND SUB-F-CONTINUOUS
FUNCTIONS
https://doi.org/10.32792/utq/utj/vol10/3/10

Mayada Gassab Mohammed
Department of Mathematics
College of Education
University of Thi-Qar

Abstract:
In this paper we introduce and study F-closed sets and new types of generalized
continuity.

Introduction:
A subset A of a topological space X is said to be F-closed if it is the intersection of an
open and closed set. In this paper we introduce three different notions of generalized
continuity, namely F- irresoluteness, F-continuity and sub-F- continuity and we
discuss some properties of these functions.

Definition (1-1):
A subset A of a space (X, τ) is called F-closed if A=U∩V such that U is open set and
V is closed set in X. We denote the collection of all F-closed subsets of X by F(X, τ).

Remarks (1-2):
A subset A of X is F-closed set iff X-A is the union of an open set and a closed set.
1. Any open (resp. closed) subset of X is F-closed set.
2. The complement of a F-closed subset need not be F-closed set.

Definition (1-3):
A subset A of a space (X, τ) is said to be preopen set if A⊆ int(cl A).

Remarks (1-4):
1. Every open set is preopen set.
2. Every preopen and F-closed set is open set.
Proposition (1-5):
Let A be a subset of a space (X, τ), then the following statements are equivalent:

1. A is F-closed set.
2. $A = U \cap \text{cl } A$, U is open set in X.
3. $\text{cl } A - A$ is closed set.

Remark (1-6):
Let A any sub set of a space (X, τ) then A need not be F-closed set, but if (X, τ) has property which every dense subset of X is open set then A is F-closed set.

Proposition (1-7):
Let A and B be F-closed subsets of a space (X, τ). If $A \cap \text{cl } B = \text{cl } A \cap B = \emptyset$, then $A \cup B \in F(X, \tau)$.

Proof:
Suppose there are open sets U and V such that $A = U \cap \text{cl } A$ and $B = V \cap \text{cl } B$.
Since $A \cap \text{cl } B = B \cap \text{cl } A = \emptyset$, then $A \cup B = (U \cup V) \cap \text{cl } (A \cup B)$, from definition of F-closed set we obtain $A \cup B \in F(X, \tau)$.

Definition (1-8):
A function $f : (X, \tau) \to (Y, \tau')$ is said to be F-irresolute function iff for any F-closed set U in Y then $f^{-1}(U)$ is F-closed set in X.

Definition (1-9):
A function $f : (X, \tau) \to (Y, \tau')$ is said to be F-continuous function iff for any open set U in Y then $f^{-1}(U)$ is F-closed set in X.

Definition (1-10):
A function $(X, \tau) \to (Y, \tau')$ is said to be sub-F-continuous function if there is a subbase or base B for Y such that for any $U \in B$ then $f^{-1}(U)$ is F-closed set in X.
Theorem (1-11):

Let \(f : (X, \tau) \rightarrow (Y, \tau') \) be a function, then

1. If \(f \) is continuous function then \(f \) is F-irresolute function.
2. If \(f \) is F-irresolute function then \(f \) is F-continuous function.
3. If \(f \) is F-continuous function then \(f \) is sub-F-continuous function.

Remark (1-12):

The converse of theorem above is not true in general. The following examples explain that.

Example (1-13):

Let \(f : (R, \tau_U) \rightarrow (R, \tau_U) \), \(\tau_U \) is usual topology on \(R \), we will define \(f \) on \(R \) as follows:

\[f(x) = 1 \text{ if } x > 0 \quad \text{and} \quad f(x) = x \text{ if } x \leq 0 \]

We note that \(f \) is not continuous function but \(f \) is F-irresolute function because for any F-closed set \(U \) in \(R \) then \(f^{-1}(U) = U \cup (0, \infty) \) if \(1 \in U \) and \(f^{-1}(U) = U \cap (-\infty, 0) \) if \(1 \notin U \), \(U \cup (0, \infty) \) and \(U \cap (-\infty, 0) \) are F-closed sets, therefore, \(f \) is F-irresolute function.

Example (1-14):

Let \(f : (R, \tau_U) \rightarrow (R, \tau_U) \) such that \(f(x) = x \) if \(x \neq 0 \) and \(f(0) = 1 \). For any \(U \subset R \) we have \(f^{-1}(U) = U \cap \{0\} \) if \(1 \notin U \) and \(f^{-1}(U) = U \cup \{0\} \) if \(1 \in U \).

Hence, if \(U \) is an open interval then \(f^{-1}(U) \) is F-closed. Thus \(f \) is sub-F-continuous function, but \(f \) is not F-continuous function because there is an open set \(U = R \setminus \{0\} \cup \{1 \mid n \in \mathbb{N} \text{ and } n \geq 2 \} \) and \(f^{-1}(U) = \{x \in \mathbb{R} \mid x \neq 1 \text{ for each } n \geq 2\} \) is not F-closed set.

Example (1-15):
Let $E=\{1^n \mid n \in \mathbb{N}\}$, let $f : (\mathbb{R}, \tau_u) \rightarrow (\mathbb{R}, \tau_u)$ such that $f(x)=x$ if $x \in E$ and $f(x)=0$ if $x \in \mathbb{R} \setminus E$, f is not F-irresolute function because $\{0\}$ is F-closed set in \mathbb{R} but $f^{-1}(0)=\mathbb{R} \setminus E$ is not F-closed in \mathbb{R}.

We note that f is F-continuous function because any an open set U then $f^{-1}(U)$ is F-closed set in \mathbb{R}.

Remark (1-16):

From theorem (1-11), we get the relation among F-irresolute, F-continuous, sub-F-continuous and continuous function as follows:
Continuous function \rightarrow F-irresolute function \rightarrow F-continuous function \rightarrow sub-F-continuous function.

Definition (1-17):

A function $f : (X, \tau) \rightarrow (Y, \tau')$ is said to be pre-continuous function iff for any an open set U in Y then $f^{-1}(U)$ is preopen set in X.

Theorem (1-18):

A function $f : (X, \tau) \rightarrow (Y, \tau')$ is continuous function iff f is pre-continuous and sub-F-continuous function.

Proof:

Suppose that f is pre-continuous and sub-F-continuous function and B is a base for Y such that for any $U \in B$ then $f^{-1}(U)$ is F-closed set. Now let $V \in \tau'$ and $f(x) \in V$.

There is $a \in U \subseteq B$ such that $f(x) \in U \subseteq V$.
Since $f^{-1}(U)$ is pre-open and F-closed set then $f^{-1}(U)$ is an open set, therefore, f is continuous function.

Proposition (1-19):

Let $f : (X, \tau) \rightarrow (Y, \tau')$ and $g : (Y, \tau') \rightarrow (Z, \tau'')$ two functions, then
1. If f and g are F-irresolute functions, then gof is F-irresolute function.
2. If f is F-continuous function and g is continuous functions, then gof is F-continuous function.

Remarks (1-20):
1. The composition of two F-continuous functions need not be F-continuous function.

2. The composition of a sub- F-continuous function and continuous function need not be sub-F-continuous function.

References:

