Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

F-CONTINUOUS FUNCTIONS AND SUB-F-CONTINUOUS FUNCTIONS

https://doi.org/10.32792/utq/utj/vol10/3/10

Mayada Gassab Mohammed Department of Mathematics College of Education University of Thi-Qar

Abstract:

In this paper we introduce and study F-closed sets and new types of generalized continuity.

Introduction:

A subset A of a topological space X is said to be F-closed if it is the intersection of an open and closed set . in this paper we introduce three different notions of generalized continuity , namely F- irresoluteness , F-continuity and sub-F- continuity and we discuss some properties of these functions

Definition (1-1):

A subset A of a space (X, τ) is called F-closed if $A=U \cap V$ such that U is open set and V is closed set in X. we denote the collection of all F-closed subsets of X by $F(X, \tau)$.

Remarks(1-2):

A subset A of X is F-closed set iff X-A is the union of an open set and a closed set.

- 1. Any open (resp. closed) subset of X is F-closed set.
- 2. The complement of a F-closed subset need not be F-closed set.

Definition (1-3):

A subset A of a space (X, τ) is said to be preopen set if $A \subset \text{int}(cl A)$.

Remarks (1-4):

- 1. Every open set is preopen set.
- 2. Every preopen and F-closed set is open set.

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

Proposition (1-5):

Let A be a subset of a space (X, τ) , then the following statements are equivalent:

- 1. A is F-closed set.
- 2. $A=U \cap cl A$, U is open set in X.
- 3. cl A- A is closed set.

Remark (1-6):

Let A any sub set of a space (X, τ) then A need not be F-closed set, but if (X, τ) has property which every dense subset of X is open set then A is F-closed set.

Proposition (1-7):

Let A and B be F-closed subsets of a space (X, τ) . If $A \cap clB = clA \cap B = \phi$, then $A \cup B \in F(x, \tau)$.

Proof:

Suppose there are open sets U and V such that $A=U\cap clA$ and $B=V\cap clB$.

Since $A \cap clB = B \cap clA = \phi$, then $A \cup B = (U \cup V) \cap cl(A \cup B)$, from definition of F-closed set we obtain $A \cup B \in F(X, \tau)$.

Definition (1-8):

A function $f:(X, \tau) \to (Y, \tau')$ is said to be F-irresolute function iff for any F-closed set U in Y then $f^1(U)$ is F-closed set in X.

Definition (1-9):

A function $f: (X, \tau) \to (Y, \tau')$ is said to be F-continuous function iff for any open set U in Y then $f^1(U)$ is F-closed set in X.

Definition (1-10):

A function $(X, \tau) \to (Y, \tau')$ is said to be sub-F-continuous function if there is a subbase or base B for Y such that for any $U \in B$ then $f^1(U)$ is F-closed set in X.

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

Theorem (1-11):

Let $f:(X,\tau) \to (Y,\tau')$ be a function , then

- 1. If f is continuous function then f is F-irresolute function.
- 2. If f is F-irresolute function then f is F-continuous function.
- 3. If f is F-continuous function then f is sub-F- continuous function.

Remark (1-12):

The converse of theorem above is not true in general. The following examples explain that.

Example (1-13):

Let $f:(R, \tau_u) \to (R, \tau_u)$, τ_u is usual topology on R, we will define f on R as follows f(x) = 1 if f(x) = 1 if

We note that f is not continuous function but f is F-irresolute function because for any F-closed set U in R then $f^1(U) = U \cup (0,\infty)$ if $1 \in U$ and

 $f^1(U)=U\cap (-\infty,0)$ if $1\notin U$, $U\cup (0,\infty)$ and $U\cap (-\infty,0)$ are F-closed sets ,therefore , f is F-irresolute function .

Example (1-14):

Let $f:(R\ ,\tau_u\)\to (R\ ,\tau_u\)$ such that f(x)=x if $x\neq 0$ and f(0)=1. For any $U\subset R$ we have $f^{-1}(U)=U-\{0\}$ if $1\not\in U$ and $f^{-1}(U)=U\cup\{0\}$ if $1\in U$.

Hence , if U is an open interval then $f^1(U)$ is F-closed . thus f is sub-F-continuous function , but f is not F-continuous function because there is an open set $U=R-\{0\}\cup\{1\ |\ n\in N\ ,\ n\geq 2\ \}$ and $f^1(U)=\{x\in R|\ x\neq 1\ |\ n\in N\ ,\ n\geq 2\}$ is not F-closed set .

Example(1-15):

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

Let $E=\{1 \mid n, n \in N\}$, let $f:(R, \tau_u) \to (R, \tau_u)$ such that f(x)=x if $x \in E$ and f(x)=0 if $x \in R-E$, f is not F-irresolute function because $\{0\}$ is F-closed set in R but $f^{-1}(0)=R-E$ is not F-closed in R

We note that f is F-continuous function because any an open set U then $f^{1}(U)$ is F-closed set in R.

Remark (1-16):

From theorem (1-11), we get the relation among F-irresolute ,F-continuous , sub-F-continuous and continuous function as follows

Continuous function \rightarrow F-irresolute function \rightarrow F- continuous function \rightarrow sub-F-continuous function.

Defintion (1-17):

A function $f:(X, \tau) \to (Y, \tau')$ is said to be pre-continuous function iff for any an open set U in Y then $f^1(U)$ is preopen set in X.

Theorem (1-18):

A function $f:(X, \tau) \to (Y, \tau')$ is continuous function iff f is pre-continuous and sub-F-continuous function .

Proof:

Suppose that f is pre-continuous and sub –F-continuous function and B is a base for Y such that for any $U \in B$ then $f^{-1}(U)$ is F-closed set. Now let $V \in \tau'$ and $f(x) \in V$.

There is $a \in U \in B$ such that $f(x) \in U \subset V$.

Since $f^{-1}(U)$ is pre-open and F-closed set then $f^{-1}(U)$ is an open set, therefore, f is continuous function.

Proposition (1-19):

Let $f:(X,\tau)\to (Y,\tau')$ and $g:(Y,\tau')\to (Z,\tau'')$ two functions , then

- 1. If f and g are F-irresolute functions, then gof is F-irresolute function.
- 2. If f is F-continuous function and g is continuous functions, then gof is F-continuous function.

Remarks (1-20):

Web Site: https://jutq.utq.edu.iq/index.php/main Email: journal@jutq.utq.edu.iq

- 1. The composition of two F-continuous functions need not be F-continuous function .
- 2. The composition of a sub- F-continuous function and continuous function need not be sub-F-continuous function .

References:

- [1] Samir B. Hadid ,Introduction to general topology .Mussel, 1988.
- [2] G.B. Navalagi, Definition bank in general topology, 16/7/2000.
- [3] Ganster, M. and Reilly, A decomposition of continuity, New York, 1977.
- **[4]Wilhelm , M .** Some negative examples concerning nearly continuity , comment . Math. $28\,(1986)$, 187-194 .