F-CONTINUOUS FUNCTIONS AND SUB-F-CONTINUOUS FUNCTIONS
 https://doi.org/10.32792/utq/utj/vol10/3/10

Mayada Gassab Mohammed
Department of Mathematics
College of Education
University of Thi-Qar

Abstract

: In this paper we introduce and study F -closed sets and new types of generalized continuity.

Introduction:

A subset A of a topological space X is said to be F-closed if it is the intersection of an open and closed set . in this paper we introduce three different notions of generalized continuity, namely F- irresoluteness, F-continuity and sub-F- continuity and we discuss some properties of these functions

Definition (1-1):

A subset A of a space (X, τ) is called F-closed if $A=U \cap V$ such that U is open set and V is closed set in X . we denote the collection of all F-closed subsets of X by $\mathrm{F}(\mathrm{X}, \tau)$.

Remarks(1-2) :

A subset A of X is F -closed set iff X -A is the union of an open set and a closed set .

1. Any open (resp. closed) subset of X is F-closed set.
2. The complement of a F-closed subset need not be F-closed set .

Definition (1-3) :
A subset A of a space (X, τ) is said to be preopen set if $A \subseteq \operatorname{int}(c l A)$.

Remarks (1-4) :

1. Every open set is preopen set.
2. Every preopen and F-closed set is open set .

Proposition (1-5):

Let A be a subset of a space (X, τ), then the following statements are equivalent:

1. A is F-closed set .
2. $A=U \cap c l a, U$ is open set in X.
3. cl A- A is closed set .

Remark (1-6) :

Let A any sub set of a space (X, τ) then A need not be F-closed set, but if (X, τ) has property which every dense subset of X is open set then A is F -closed set .

Proposition (1-7) :

Let A and B be F -closed subsets of a space (X, τ). If $\mathrm{A} \cap \mathrm{clB}=\mathrm{clA} \cap \mathrm{B}=\phi$, then $A \cup B \in F(x, \tau)$.

Proof :

Suppose there are open sets U and V such that $\mathrm{A}=\mathrm{U} \cap \mathrm{clA}$ and $\mathrm{B}=\mathrm{V} \cap c \mathrm{~B}$.
Since $A \cap c l B=B \cap c l A=\phi$, then $A \cup B=(U \cup V) \cap \operatorname{cl}(A \cup B)$, from definition of F-closed set we obtain $A \cup B \in F(X, \tau)$.

Definition (1-8) :

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ is said to be F-irresolute function iff for any F-closed set U in Y then $f^{-1}(U)$ is F-closed set in X.

Definition (1-9) :

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ is said to be F-continuous function iff for any open set U in Y then $f^{-1}(U)$ is F-closed set in X.

Definition (1-10) :

A function $(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ is said to be sub-F-continuous function if there is a subbase or base B for Y such that for any $U \in B$ then $f^{-1}(U)$ is F-closed set in X.

Theorem (1-11) :

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ be a function, then

1. If f is continuous function then f is F -irresolute function.
2. If f is F -irresolute function then f is F -continuous function .
3. If f is F -continuous function then f is sub-F- continuous function .

Remark (1-12) :

The converse of theorem above is not true in general. The following examples explain that.

Example (1-13) :

Let $\mathrm{f}:\left(\mathrm{R}, \tau_{\mathrm{u}}\right) \rightarrow\left(\mathrm{R}, \tau_{\mathrm{u}}\right), \tau_{\mathrm{u}}$ is usual topology on R , we will define f on R as follows $: f(x)=1$ if $x>0$ and $f(x)=x$ if $x \leq 0$

We note that f is not continuous function but f is F -irresolute function because for any F-closed set U in R then $f^{-1}(U)=U \cup(0, \infty)$ if $1 \in U$ and
$\mathrm{f}^{1}(\mathrm{U})=\mathrm{U} \cap(-\infty, 0)$ if $1 \notin \mathrm{U}, \mathrm{U} \cup(0, \infty)$ and $\mathrm{U} \cap(-\infty, 0)$ are F-closed sets ,therefore , f is F-irresolute function .

Example (1-14) :

Let $\mathrm{f}:\left(\mathrm{R}, \tau_{\mathrm{u}}\right) \rightarrow\left(\mathrm{R}, \tau_{\mathrm{u}}\right)$ such that $\mathrm{f}(\mathrm{x})=\mathrm{x}$ if $\mathrm{x} \neq 0$ and $\mathrm{f}(0)=1$. For any $\mathrm{U} \subset \mathrm{R}$ we have $f^{-1}(U)=U-\{0\}$ if $1 \notin U$ and $f^{-1}(U)=U \cup\{0\}$ if $1 \in U$.
Hence, if U is an open interval then $f^{-1}(U)$ is F-closed . thus f is sub-F-continuous function, but f is not F -continuous function because there is an open set $\mathrm{U}=\mathrm{R}-\{0\} \cup\{1 \backslash \mathrm{n} \mid \mathrm{n} \in \mathrm{N}, \mathrm{n} \geq 2\}$ and $\mathrm{f}^{1}(\mathrm{U})=\{\mathrm{x} \in \mathrm{R} \mid \mathrm{x} \neq 1 \backslash \mathrm{n}$ for each $\mathrm{n} \geq 2\}$ is not F closed set .

Example(1-15) :

Let $\mathrm{E}=\{11 \mathrm{n}, \mathrm{n} \in \mathrm{N}\}$, let $\mathrm{f}:\left(\mathrm{R}, \tau_{\mathrm{u}}\right) \rightarrow\left(\mathrm{R}, \tau_{\mathrm{u}}\right)$ such that $\mathrm{f}(\mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in \mathrm{E}$ and $f(x)=0$ if $x \in R-E$, f is not F-irresolute function because $\{0\}$ is F-closed set in R but f ${ }^{1}(0)=R-E$ is not F - closed in R

We note that f is F -continuous function because any an open set U then $f^{-1}(U)$ is F-closed set in R.

Remark (1-16) :

From theorem (1-11), we get the relation among F-irresolute ,F-continuous, sub-Fcontinuous and continuous function as follows

Continuous function $\rightarrow \mathrm{F}$-irresolute function $\rightarrow \mathrm{F}$ - continuous function \rightarrow sub- $\mathrm{F}-$ continuous function.

Defintion (1-17) :

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ is said to be pre-continuous function iff for any an open set U in Y then $f^{-1}(U)$ is preopen set in X.

Theorem (1-18) :

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ is continuous function iff f is pre-continuous and sub-Fcontinuous function.

Proof :
Suppose that f is pre-continuous and sub -F -continuous function and B is a base for Y such that for any $U \in B$ then $f^{-1}(U)$ is F-closed set. Now let $V \in \tau^{\prime}$ and $f(x) \in V$.

There is $a \in U \in B$ such that $f(x) \in U \subseteq V$.
Since $f^{-1}(U)$ is pre-open and F-closed set then $f^{-1}(U)$ is an open set, therefore, f is continuous function.

Proposition (1-19) :
Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \tau^{\prime}\right)$ and $\mathrm{g}:\left(\mathrm{Y}, \tau^{\prime}\right) \rightarrow\left(\mathrm{Z}, \tau^{\prime \prime}\right)$ two functions, then

1. If f and g are F -irresolute functions, then gof is F -irresolute function.
2. If f is F -continuous function and g is continuous functions, then gof is F continuous function .

Remarks (1-20) :

1. The composition of two F-continuous functions need not be F-continuous function.
2. The composition of a sub- F-continuous function and continuous function need not be sub-F-continuous function .

References:

[1] Samir B. Hadid ,Introduction to general topology .Mussel, 1988.
[2] G.B.Navalagi , Definition bank in general topology , 16/7/2000.
[3] Ganster , M . and Reilly ,A decomposition of continuity , New York, 1977.
[4]Wilhelm , M . Some negative examples concerning nearly continuity , comment . Math. 28 (1986), 187-194 .

