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Abstract

This paper characterizes some dynamical properties of Rdssler system.
We consider the stability of equlibria points of Rdssler system and also
stability of system when b=0 . We investigate existence of transcritical
bifurcation and Hopf bifurcation in Rossler system. Compute the largest
Lyaponuv exponent at the critical points in the special case.

Keywords: Rossler system, Nonlinear systems, Stability, Hopf
bifurcation, Lyaponuv exponent.

1. Introduction

The science of nonlinear dynamics and chaos theory has sparked many
researchers to develop mathematical models that simulate vector fields of
nonlinear chaotic physical systems. Nonlinear phenomena arise in all
fields of engineering, physics, chemistry, biology, economics, and
sociology. Examples of nonlinear chaotic systems include planetary
climate prediction models, neural network models, data compression,
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turbulence, nonlinear dynamical economics, information processing,
preventing the collapse of power systems, high-performance circuits and
devices, and liquid mixing with low power consumption (Lorenz, 1963
and Chen and Dong, 1998). The defining equations of the Rdssler system
are:

X=-y—-1,
y =X+ay,
z=b+1z(x-c),

1)

where (x,y,z) € R® and a,b,c with a = 0 are the real parameters. Réssler
studied the chaotic attractor witha=b=0.2, and c=5.7, though
properties of a=b=0.1and ¢c=5.7 have been more commonly used

since (Heinz et al, 2004).

Some properties of the Rd&ssler system can be deduced via linear
methods such as eigenvectors, but the main features of the system require
non-linear methods such as Poincare maps and bifurcation diagrams. The
original Rossler paper states the Rossler attractor was intended to behave
similarly to the Lorenz attractor, but also be easier to analyze
qualitatively. An orbit within the attractor follows an outward spiral close
to the X, y plane around an unstable fixed point (Rossler, 1976).

Lyaponuv exponents measure the rate at which nearby orbits converge
or diverge. There are as many Lyaponuv exponents as there are
dimensions in the state space of the system, but the largest is usually the
most important. Roughly speaking the (maximal) Lyaponuv exponent is
the time constant, lambda, in the expression for the distance between two
nearby orbits, Exp (lambda*t). If lambda is negative, then the orbits
converge in time, and the dynamical system is insensitive to initial
conditions. However, if lambda is positive, then the distance between
nearby orbits grows exponentially in time, and the system exhibits
sensitive dependence on initial conditions (Panaji, 2005). The paper is
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organized as follows: In the first section we given some results regarding
the stability of equlibria. In section two we study the transcritical and
Hopf bifurcations occurring at the equilibrium points in the general cases.
In section three we calculate the largest Lyaponuv exponent for Rassler
system at the equilibrium points in the special cases.

2. Stability analysis of the Rossler system

It is clear that if c®>4ab then Réssler system has two equilibriums
points:

IO(c—\/c2—4ab —c++/c? —4ab c—\/c2—4ab)
1 1 ]
2 2a 2a

c+vc? —4ab —c—+c®—4ab c++/c? —4ab
pZ( ’ ’ )
2 2a 2a
and if c?< 4ab then Rossler system has not isolated equilibrium.

Theorem 1 (Wiggins, 1990)
The critical point X of the nonlinear vector field x= f(x), xeR" is

asymptotically stable if that all of the eigenvalues of Jacobian matrix
Df (X) have negative real parts.

Theorem 2
The following statements are true:
(1) The critical point
c—+/c®—4ab —c++/c*—4ab c—+/c*—4ab .
Py ( 5 : 5 : ) is
a 2a

asymptotically stable if
(a<0,b=c>0) or (a=b<0,c>0)and otherwise it unstable
critical point.
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(i) The critical point
) (c+\/c2—4ab —c—+/c?—4ab c+\/cz—4ab) i oo
2 ’ )
2 2a 2a

unstable critical point for alla,b,c#0.
Proof: (i) the Jacobian matrix of Rossler system at the point p, is:

0 -1 -1
J(py) = 1 a 0 .
c—+/c? —4ab 0 —c—+c?-4ab
2a 2

The characteristic polynomial of J(p,)is:

2 2 2 2 2
/13_/12(2a—c—\/2c —4ab)_2(2a c-a“c —4ab2;2a—c+\/c —4ab)+m:0l
(2)

The solutions of equation (2) depend on a,b,c in the following way:
1. For (@a>0,b>0,c>0)or (a>0,b>0,c<0)or(a>0,b<0,c>0)

or(a>0,b<0,c<0) or (a<0,b<0,c>0) or (a<0,b>0,c<0)
there are one negative real eigenvalues and two complex eigenvalues
with positive real part.

2. For (a<0,b=c>0)or (a=b<0,c>0) there are one negative real
eigenvalues and two complex eigenvalues with negative real part.
(if) the Jacobian matrix of Rossler system at the point p, is:

0 -1 -1
J(p,) = 1 a 0 .
c++/c? —4ab 0 —c++c?—4ab
L 2a 2 i

The characteristic polynomial of J(p,)is:
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B 2_ 2. 2. (.2 —9a_c—+/c? =
2a—-Cc++/c°—4ab _Mac a‘vJc-—4ab-2a-c-+c 4ab)_ /_c2—4ab=0.

o ( )

2 2a
©)
The solutions of equation (3) depend on a,b,c in the following
way:

1.For (a>0,b>0,c>0)or(a<0,b>c>0)or (a<0,b>0,c<0)

there are one positive real eigenvalues and two complex eigenvalues
with negative real part.

2.For (a=b>0,c>0)or (a>0,b<0,c<0) there are three
complex eigenvalues with positive real part.

3.For (a<0,c>b>0)or (a<0,b<0,c<0) there are three complex

eigenvalues one with positive real part and two with negative real
part.

Next, we study Rossler system when b =0.

Radssler system becomes as follows:
X=-y-1,
y=Xx+ay,
Z=b+1z(x-c),
(4)

with two parameters a,c and a#0.
The system (4) have two equilibria points: p“1(0,0,0), p*2(c, — %, %) .

Theorem 3
The following statements are true:

(i) If (a<0 andc>0) then the critical point p’1(0,0,0)is
asymptotically stable.
(i) If (a>0)or (c<0) then the critical point p'1(0,0,0)is an
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unstable.
Proof: : (i) the Jacobian matrix of system (4) at the point

p"1(0,0,0)is:

0 -1 -1
J(p)=|1 a O
0 0 -c

The characteristic polynomial of J(p"1)is:
A+(c-a)l®+@1-ac)l+c=0
(A+c)(AF*—al+1) =0

A =-C, A, :%(a—w/a2—4),/13:%(a+w/a2—4)
Itis clearif c>0and —-2<a<O0then 4, <0,Re(4,,)<0.

If c>0and a<-2then 4,,,<0.

Therefore, for a<0and ¢>0 the point p’1(0,0,0)is asymptotically
stable.
If c<0then 4 >0.1f 0<a<2 then Re(4,3)>0,if a>2=4;>0.

Consequently, for (a>0)or (c <0) the point p“1(0,0,0)is an unstable.
Next, consider the stability of system (4) at the point p 2(c, — 2, g) .

Under the transformation (x,y,z) - (X,Y,Z) :
X=X+c¢C

y=y-<
a

z:Z+E
a
The system (4) becomes:

135


https://jutq.utq.edu.iq/index.php/main

University of Thi-Qar Journal Vol.12 No.1 Mar 2017
Web Site: https://jutg.utg.edu.iq/index.php/main
Email: journal@jutq.utq.edu.iq

X=-Y-2Z
Y =X +aY
Z=xz+%

a

(5)
Hence, one has to consider the stability of system (5) at (0,0,0).

The Jacobian matrix of system (5) at the point (0,0,0) is:

0 -1 -1

J(p2)=|1 a 0
€ 9o o
a

The characteristic polynomial of Jis:
2 —ar +(%)/1—c=o.

(6)
Then, from Routh-Hurwits conditions, this equation has all roots with
negative real parts if and only if A>0,C>0 and AB-C >0where

A=-a,B :ﬂ, C =-c, thatis:
a

a<0
C<O}
(7)

Consequently, we have the following theorem:

Theorem 4
The equilibrium point p 2(c, — g, %) is asymptotically stable if and

only if a<0,c<0.

3. Transcritical and Hopf bifurcations
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Consider the parameter ¢ as bifurcation parameter.
(i) Bifurcation at the point p’1(0,0,0):

Proposition 1
If c¢=0the system (4) undergoes transcritical bifurcation at the point

p,(0,0,0) forall a<0.
Proof: If a<0,c<0, we get p1(0,0,0) unstable point and

p2(c, _2’ g)stable. If a<0,c>0 we get p1(0,0,0) stable point

N c c .
and p 2(c, - X g)unstable. Therefore, the system (4) has transcritical

bifurcationat c=0.

(ii) Bifurcation of the points p 2(c, — %, g) :

Assume that a <0,c <0, we have the coefficients of cubic polynomial (6)
are all positive. Therefore, f(4)>0 for all 4 >0. Consequently there is
instability [Re(A) > 0]only if there are two complex conjugate zeros for
(6). Let these two zeros be A4 =iwand A, =—iw. Since
M+, +4;=—a, we have A; =—a which is stability for system (4).

— 3 —
#. Thus, Hopf

Then we have f(1;)=-2a®-a—2c and c=¢, =
bifurcation may appear at the steady state p 2(c, — g, %) . According to

. * cC C -
theorem 4, the point pz(c,—g,g) losses stability when

—2a°-a
C=CH=—"7T—.
2
Theorem 5
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f— 3 —
If c=c,= #, then the system (4) undergoes a Hopf bifurcation

at the equilibrium point  p”2(c, — 2, g) .

—2a*-a .
Proof: If c=c, = — then the equation (6) becomes

/13_a/12+(2a2+1)2+2a3+a
2 2

=0. Therefore, characteristic equation

2a%+1

has a pair of purely imaginary roots 4, , = =i and a negative real

root A; =—a.
Differentiating both sides of equation (6) with respect to ¢, we obtain

a0t _9q, 94, 04 cd2 1, 1
dc dc dc adc a
dA a—-A

dc 3ai2-2a2A+a+c

_ 2
AL(Co) = a-4 - with 4=+ |22+
3a&2—2a22—a3+5a 2

2a+1
a—i
_ 2
2
2a® +2a-2ia? 2a” +1
2
i |2+l
2
(a®+a)—ia’ 2a2+1
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2a®+1
2

)

4 3 2 i
1(2a +Ea )+i(-a

2

2a’ +2a4 +a?

1 2a* +§a2
Then, Re[4.(c,)]== : 2 >0.
2 948 +Ea4 +a?

2a®+1
a

ImLA (Co)] = - = 2

<0.

228 +2a* +a?

Therefore, A.(c,)# 0. According to Hopf bifurcation theorem in [1,2],
the system (5) has display a Hopf bifurcation at (0,0,0), so the system (4)
display a Hopf bifurcation at the point p“2(c, — %, %) :

Theorem 6

— 3 —
If c=c¢c, = # and b =0, then the Rdssler system undergoes a

Hopf bifurcation at the equilibrium point p, = p.
Proof: Directly from above theorem.

4. Lyaponuv exponent of Rdssler system

To compute the maximal Lyaponuv exponent of a system of ordinary
differential equations we must integrate both the original system and its
linearization v = A(t)v. Essentially any initial vector v, can be used

because almost all vectors will have some component along the direction
of the maximal Lyaponuv direction. We cannot compute the limit in

. . 1 :
maximal Lyaponuv exponent y(x,v):tllm supE|<D(t,x)v| but instead
—0
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simply integrate for some long time T and estimate:

1, ()
=—Ln
7max(T) T |VO|
exponent; to estimate the error in the computation, it is useful to plot
7 max @S @ function of T (Meiss, 2007).

.This quantity will rapidly converge to the maximal

Next, we calculate maximal Lyaponuv exponent for Rossler system at
the critical points by using Mat lab program.

1. The maximal Lyaponuv exponent for Rossler system at the critical
point p, with parameters
(a<0,b=c>0)and (a<b<0,c>0)and (a<0,b=0,c>0) is
negative number.

2. The maximal Lyaponuv exponent for Réssler system at the critical
point p, with parameters
(a<0,b<0,c<0) and (a>0,b>0,c>0) and
(a>0,b=0,c<0) and (a<0,b=0,c<0) is positive number.

3. The maximal Lyaponuv exponent for Rdssler system at the critical
point p,with parameters (a <0,b =0,c <0) is negative number

4. The maximal Lyaponuv exponent for Rossler system at the critical
point p,with parameters
(a<0,b=c>0)and (a<b<0,c>0)and (a<0,b=0,c>0) is
positive number.
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Finger (1) For 3<C <11, and constant parameters @ and b there are three ranges for
which the Rdssler system has at least one nonnegative Lyapunov exponent, rendering
convergence impossible.

Finger (2) The chaos for Réssler system when @a=0.3,b=0.4 and c=0.5
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