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Abstract 

 In this work we present an investigation of a complex viscoelastic 

flow through an abrupt expansion with expansion ratio D/d = 4, where the 

Oldroyd-B model was consider as a constitutive equation. The governing 

equations are solved using the Finite Element Method. The polymer is 

modeled as a monodisperse suspension of “Oldroyd-B” molecules, which 

provides a direct link the molecular topology and the flow properties of the 

melt. The branching produces an enhancement in the size of upstream vortex 

in creeping flows. Also was found that including inertia forces will give the 

intensity of lip vortex increases, while the size of corner vortex will initially 

decreased with growth of Weissenberg number but with more increase 

(We>4), the size of corner vortex will begin to increase in size.  The effect 

arises from the differing responses in shear and extensional flows of polymer 

melts. 

Keywords: viscoelastic flow, Oldroyd-B, Rheology, Weissenberg number, 

Planar Contraction Channel, lip-vortex, Finite Element method. 

Introduction: 

The focus of this paper is on the prediction of the flow of branched 

polymer melts through a 4:1 planar contraction using the Oldroyd-B model of 
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Crispulo Gallegos [1].There have been many extensions to the tube kinetic 

model for entangled melts developed by Doi and Edwards [2], including the 

DCR model of Marrucci [3], the pom-pom model of McLeish and Larson [4], 

as well as versions of the extended pom-pom model [1]. These models have 

two characteristics that are missing from phenomenological models such as 

the Oldroyd-B model. The first characteristic shows how the melt rheology is 

dependent on the molecular structure of the polymer, while the second one 

indicates that the spectrum of relaxation times leads to partial differential 

equations for the orientation and stretch. The original pom-pom model of 

McLeish and Larson [4] is based on an idealized polymer molecule in which 

the polymer chains are represented by a backbone segment connecting two 

identical pom-poms each with q arms at the branch points. The drag that the 

melt spend on these arms leads to stretching the back bone. The branch points 

slow down the reprated motion of the backbone by pinning the molecule in 

place at the tube junctions. The free ends of the arms are still able to move, 

however, and the polymer is able to free itself from the tube by a process 

known as arm-retraction, which is triggered when the molecule reaches its 

maximum stretched state. The arms progressively move their way outof the 

tubes towards the branch points by diffusion. Once the arms relax, the 

backbone can subsequently relax by moving the branch points. The finite 

extensibility constraint on the backbone stretch gives rise to discontinuity in 

the gradient of the steady-state extensional viscosity. Blackwell et al. [5] 

adjusted the evolution equation for the stretch to allow for branch point 

displacement. These effects by removing the discontinuity in steady-state 

extensional viscosity gradient. The two remaining major drawbacks in the 

original pom-pom model, viz. the prediction of a zero second normal stress-

difference and the unboundedness of the backbone orientation equation, were 

addressed in the extended pom-pom (XPP) model developed by Verbeeten et 
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al. [1].  Because it was adopted as a benchmark problem at the 5th 

international workshop on numerical methods in non-Newtonian flows [6], 

the planar 4:1 contraction problem has been at the forefront of computational 

rheology. It is currently considered that the choice of 4:1 contraction ratio is 

limiting with respect to stimulation of a rich variety of interesting flow 

phenomena. Aremarkable exception to the lure of the 4:1 configuration is the 

recent paper of Alves et al. [7] who investigated the effect of varying 

contraction ratio on creeping flow characteristics in a planar contraction for a 

linear Phan-Thien/Tanner (PTT) fluid (  0.25), capable of moderate strain-

hardening. Nevertheless, due to the inclusive literature on the 4:1 contraction 

problem it is still important benchmark problem on which to test the accuracy 

and stability of numerical schemes. A comprehensive account of 

experimental observations and numerical predictions is presented in the 

research monograph of Owens and Phillips [8] and the review paper of Evans 

and Walters [9]. We finish with some introductory remarks, reporting on 

some of the contributions that have been made to the understanding of this 

subject [12].  

 The main objectives of the present study are: (i) to investigate effects 

of non-dimensional parameter (We) of the Oldroyd-B model upon the flow 

for a planar sudden expansion of lower expansion ratio of 1:4; (ii) to analyse 

the effect of elasticity on the flow field; (iii) to show the variation of profiles 

of the velocity and shear stress along the centerline for the Newtonian and 

viscoelastic cases. 

Numerical simulation: 

In the present work we consider the two-dimensional incompressible, 

isothermal flow from a straight channel of height d to the width of the 

expanded channel D, corresponding to an expansion ratio E, (E=D/d=4) as 

shown in Fig.1. Fluid passes from one channel into another of smaller cross-

https://jutq.utq.edu.iq/index.php/main
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sectional width and in the process generates a complex flow exhibiting 

regions of strong shearing near the walls and uniaxial extension along the 

centerline. In the literature on viscoelastic contraction flows, interest has 

focused amongst other things upon the following vortex behaviour, pressure 

drop across the contraction and velocity overshoot along the axis of 

symmetry. 

Under the above assumptions the governing equations comprise the 

conservation equations of momentum and mass, together with a rheological 

equation of state. In this paper the single equation version of the extended 

Oldroyd-B model is considered. The equations of motion and continuity are 

[10]: 
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where iv  is the velocity field,   is the density, s is the solvent 

viscosity, p  is the pressure and ij  is the polymeric contribution to the 

extra-stress tensor. The constitutive equation for the single equation version 

of the Oldroyd-B is [10-13], [16-17]: 
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In these equations, b0  and s0  represent the orientation and 

backbone stretch relaxation times, respectively, and 0G  is the linear 

relaxation modulus. 

The parameter   in (3) was incorporated into the model to remove the 

discontinuity in the derivative of the extensional viscosity that was present in 

the differential approximation of the original pom-pom model. Its value is 

estimated by data-fitting and found to be inversely proportional to the 

number of arms q . More precisely, we have 
q

2
 . Finally, the extra-stress 

tensor can be written as the sum of polymeric and solvent contributions, i.e. 

                                      ijsijij DT  2     

 (5) 

The governing equations are made dimensionless by scaling length by 

L , velocity by U , time by UL /  and pressure and extra-stress by LU / , 

where PS     is the total viscosity. To preserve similarity between the 

form of the nondimensional Oldroyd-B model, we define bP G 00   . Then, 

defining dimensionless parameters ,,Re We  and  , viz. 
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where Re=Reynolds number, We=the Weissenberg number, β=the solvent 

viscosity ratio, ε=the ratio of the stretch to orientation relaxation times. 

The governing equations may be transformed into non-dimensional form, 
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The extra-stress tensor ijT , is given by  ijijij DT  2 . The 

parameter  , the ratio of the stretch to orientation relaxation times, is 

inversely proportional to the entanglement molecular weight of the backbone 

segments. Values of   approaching unity correspond to molecules with 

relatively short backbone lengths but long arms to slow down the dynamics. 

Small values of ε correspond to highly entangled backbones. 

 

Figure (1): Schematic representation of the 1:4 planar sudden expansion. 

The boundary conditions are set according to the following: 

 A fully-developed  (Poiseuille axial-velocity profile) at the inlet and 

the outlet of the channel. 
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  On the walls, no-slip boundary conditions are applied: 

 0u  ; 0v         … 

… … (10) 

 At the inlet of the channel, the axial and the radial  velocity 

components  are set as: 
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… … (11) 

 At the outlet of the channel, the axial and the radial velocity 

components  are set as: 

0 yu  ; 0 yv       … 

… … (12) 

 The inlet and outlet values of pressures are extrapolated depending on 

the inflow pressure value. 

 

Mixed finite element formulations: 

Consider the steady, incompressible flow of an viscoelastic fluid. As a 

point of departure the classical three-field mixed formulation is chosen, in 

which, besides the momentum and continuity equation, the constitutive 

equation is also cast in a weighted residuals form. This is a natural extension 

of the common velocity-pressure formulation for Stokes type problems and 

implicitly accounts for the partial differential form of the constitutive 

equation. We consider a triangular discretization of the domain, choose the 

quadratic polynomial approximation of the velocities iv  plus linear 

approximation of the pressure. Regarding the extra-stress tensor ij , a 

continuous linear or quadratic interpolation has been chosen. After 

discretization of the set of eqs. (1)–(2), we have to solve a non-linear 

algebraic system. At least, two basic approaches may be adopted to handle 
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this non-linearity, a decoupled and a coupled one. In the decoupled approach, 

the computation of the viscoelastic extra-stress tensor is performed separately 

from that of the flow kinematics by splitting the global system into two sub-

systems: the conservation equations (equ. (1)) and the evolution equation of 

the extra-stress tensor equ. (3). From known kinematics ( iv  and p), one 

calculates the tensor 
ij  solution of equ. (3). The kinematics are then updated 

by solving the conservation equations. The iterative procedure is generally 

based on Picard’s iteration scheme. This approach has been used by several 

authors. (see Aboubacar et al. [6] and Béraudo C., et al. [14]). 

 

Results and Discussion: 

 Numerical result have been obtained by pursuingthe following values 

the non-dimensional parameters: 15.0,2,3/1   q  and 9/1 . 

Calculations have been done  for Weissenberg numbers in the range 

200 We  and the value of the Reynolds number have been taken in 

consideration, viz. 5Re  . In Fig. 3, the obtained results for the constant-

viscosity Oldroyd-B model are presented in terms of streamline plots, to 

increase Weissenberg numbers in the range 60 We . The results present  a 

diminishing corner vortex and the appearance and enhancement of a tiny lip 

vortex  with an  increase in the elasticity (We). when We=0, there is just the 

vortex at the salient corner. Lip vortex enhancement could be indicated as 

We increases. As We increases, the intensity of lip vortex increases as well, 

while the size of corner vortex decreases. At We = 2 A minute lip vortex is 

barely can be seen and is very close to the re-entrant corner and it grows in 

size as We increases but cannot be visible when We is less than 2. This 

behaviour is in agreement with the previous results of Aboubacar and 

Webster [6] and Alves et al. [7], which obviously predicts the shrinking of 
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the corner vortex up to We=4 and the appearance of a lip vortex at 

We=2.When We=6, the both vortex (corner, lip) will be mixed and get to be 

one large vortex. 

 

                      

      (a) We=0            (b) We=2 

 

                  

      (c) We=4       (d) We=6 

Figure (2): Streamline patterns for an Oldroyd-B fluid Stream function with 

increasing We, Re=5. 

a) We=0, b) We=2, c) We=4, d) We=6 

 

 To study the effect of a mesh refinement on numerical results, we 

used Richardson's extrapolation method and have been three computational 

mesh as given in Table (1). The mesh-converged value is given as [15]: 
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and the relative error as: 

  1003 



rE       … 

… … (14) 

where 3  and 2  are values of particular flow variables 

corresponding to a Mesh M3 and Mesh M2. 3N  and 2N represents the 

number of elements for Mesh M3 and Mesh M2. 

We use a mesh independence test for verification of the accuracy of the 

results by taking the three computational mesh 1000×140, 1200×150 and 

1400×160. Tables (1) shows the accuracy of data for recirculation lengths 

and the separation point  (Xr1) on the upper walls for We=2 and Re=5. 

 Computational grid at the channel is represent as in Fig.3, which 

became coarser at the center of channel while close to the walls the grid was 

finer. The Meshes M3, M2 and M1 are agree well. The estimated numerical 

accuracy for recirculation lengths equal to Er=0.0196% for Xr1 for M3. In 

Fig.4 show  distribution of axial velocity on center x-line for different grids 

(M1, M2 and M3) with We=2 and Re=5. and we can observe the 

convergence of the results too therefore in the end of this test we chose the 

mesh M3 (1400×160) for all calculations in this work.  

 

Table (1): Effect of mesh refinement for Newtonian fluid with We=2 and 

Re=5. 

Mesh 
Number of 

elements 
Iterations 

(Xr1) 

Xr1 Φ Er[%] 
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M1 1000 × 140 800 3.7238 ---- ---- 

M2 1200 × 150 800 3.7245 3.72557 0.0288 

M3 1400 × 160 800 3.7249 3.72563 0.0196 

 

 

Figure (3): The fine mesh (M3) used in the calculations. 

  

Figure (4): Distribution of axial velocity on center x-line for different grids 

(M1, M2 and M3) with We=2 and Re=5. 
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In Fig.5, the size of the corner-vortex  (Xr1) is plotted against We. This plot 

replicates quantitatively and shows more clearly the trend depicted by the 

flow patterns in Fig. 2. An initial steep rise in the vortex size is seen at We = 

2, which becomes saturated asymptotically afterwards at higher We. With the 

introduction of inertia, we can discern vortex reduction with increasing 

Weissenberg number. This lies in dramatic contrast to the situation for 

creeping flow, where the vortex grows steadily in size with increasing 

Weissenberg number. 

Initially, the size of the salient-corner vortex (Xr1)  slightly decreases 

up to We=4. After that, size of the salient-corner vortex (Xr1) increases 

significantly until it reaches We=9 and when the Weissenberg number is 

increased (We>9), the increase in size of the corner vortex will be very few. 

 

Figure (5): Effect of Weissenberg number (We) for the Oldroyd-B fluid on 

the size of the corner-vortex (Xr1) on center x-line with Re=5 and mesh (M3). 

 

 The axial velocity on center x-line for different Weissenberg number 

is shows in Fig. 6, The streamwise velocity component along the centerline is 
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presented, where the velocity overshoot is so apparent with increasing 

elasticity and the velocity profiles seems to be nearly independent of mesh 

resolution. Since elongational flow is dominant along the centerline, the 

acceleration of velocity can be attributed to the sharp gradient of longitudinal 

normal stresses. The trend shows an increasing streamwise velocity with 

elasticity. The plots also show identical characteristics with similar plots 

obtained by Alves et al. [6]. The maximum velocities are predicted just inside 

the downstream channel, which indicates the position of highest strain along 

the centerline. Immediately downstream, this maximum strain is not 

sustainable by the shear-dominated flow and the polymer relaxes relatively 

quickly after a distance of about 6 widths of the downstream channel. The 

length of channel required for the relaxation process after the stretching of 

the polymer increases with Weissenberg number, which may be determined 

by evaluating the axial velocity gradient, along the centerline of the 

downstream channel. 

 

 

Figure (6): Effect of Weissenberg number (We) for the Oldroyd-B fluid on 

the axial velocity (Ux) on center x-line with Re=5 and Mesh (M3). 
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 Fig.7 shows distribution of shear stress (Txy)  along the centerline of 

x-axis with an  increase in the elasticity (We). This distribution become 

oscillatory in the expanded channel, and with increasing elasticity (We), this 

oscillatory decreases and become constant. The peak value of the extra stress 

increases with increasing Weissenberg number (We), which can be attributed 

to the existence of singularity near the re-entrant corner. 

 

 

Figure (7): Effect of Weissenberg number (We) for the Oldroyd-B fluid on 

the shear stress (Txy) on center x-line with Re=5 and Mesh (M3). 

Conclusions: 

 Comprehensive numerical simulations with a Finite-Element Method 

of Oldroyd-B viscoelastic flow through Planar Contraction Channel of 

varying in the elasticity (We), from 0 up to 20, produced results for the 

vortex characteristics and the formation mechanism similar to those found in 

a previous studies for the planar case.  The vortex type (corner, lip or mixed) 

is quantified in a two dimensional map with Weissenberg number (We) as 

independent parameter. For creeping flow, the intensity of lip vortex has been 
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found to increase with increasing Weissenberg number while the size of 

corner vortex initially decreases but with more increase (We>4), the size of 

corner vortex will begin to increase in size. The presence of inertia has the 

opposite effect on vortex intensity, which decreases with increasing 

Weissenberg number. With more increase (We>6), the both vortex (corner, 

lip) will be mixed and get to be one large vortex. 
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