Theoretical study for Coronene and Coronene-Al, B, C, Ga, In and Coronene-O interactions by using Density Functional theory


  • Ajeel Physics Department, College of science, Thi-Qar University, Iraq
  • Alwan Physics Department, College of science, Thi-Qar University, Iraq
  • Jabbar Physics Department, College of science, Thi-Qar University, Iraq


DFT, Contours, Symmetry, Dipole moment, Binding energy


   Molecular structure geometry have been investigated for Coronene and Coronene-Al, B, C, Ga, In and Coronene-O by using Gaussian software at basis set 3-21G, B3LYP level, density functional theory (DFT). Adding the atoms Al, B, C, Ga, In or Oxygen to Coronene change electrons density distribution. Study of the magnetic characterstics shows that some systems like Coronene-Carbon and Coronene-oxygen has the antiferromagnetic charactersti, this type of magnetic properties stands for open shel system which has two type of orbital ? and ? orbitals. Individual atoms calculations was achieved in order to make a comparison between Coronene and the atoms to demonstrate which of them will behave as a donor or an acceptor. EHOMO, ESOMO, ELUMO, total energy electronegativity and electrophilicity were evaluated for all paradigms under the study. Using DFT  to study the symmetry shows that there are two types of point group symmetries C6h/C1 and Cs/C1. Coronene-Corbon posseses the highest dipole moment value among the samples, it has the value (5.5873 Debye), dipole moment credit is very important to give sight about the internal structure of substances. Calculations of chemical potential shows clearly Al, Ga and In behave as donors, while B, C and O behave as acceptors. Also binding energy study exhibits that Coronene is going to physisorbe on the surface of the atoms B, C and O.


Assadi, M.H.N, et al. Theoretical study on copper's energetic and magnetism in TiO2 polymorphs. (2013).

Van Maurik, Tanjia, Gdanitz, Robert J. Acritical note on density functional theory studies on rare-gas dimmers. Journal of Chemical Physics 116 (22): 9620-9623. (2002).

] Zimmerli., Urs., Parrinello., Michele., Koumoutsakos., Petros., Dispersion corrections to density functionals for water aromatic interactions, Journal of Chemical Physics 120 (6): 2693-2699. (2004).

Parr, Robert G., Yang, Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, (1994).

C.J. Carmer, Essential of Computational Chemistry, Chichester, John Wiley and Sons, Ltd,

-168. (2002).

C.J. Carmer, Essential of Computational Chemistry, Chichester: John Wiley and Sons, Ltd,

(2002), 154-168.

Wolfram Koch, Max C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd Edition, Wiley–VCH Verlag GmbH, Germany, (2001).

G. Robert, D.Yang, Weitao, Density-Functional Theory of Atoms and Molecules, Oxford University Press, (1994).

C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785, (1988).

Jack Simons, An Introduction to Theoretical Chemistry, Salt Lake City, Utah, University of Utah, Chemistry Department, (2000).

Ali A. M., Investigations Of Some Antioxidant Materials By Using Density Functional And Semiempirical Theories, P.hD. Thesis, University of Basrah, College of Science, Department of Physics, (2009).

Jensen, Frank, Introduction to computational chemistry. JohnWiley and Sons. Pp. 68-77. (1999).

M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hartchain, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V.G. Zakrzewski, G. A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A. D. Daniels, O.Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, "Gaussian 09", revision A. 1, Gaussian, Inc., Wallingford CT, (2009).

H. I. Abood., Density Functional Theory Calculations of Di-amino naphthalene, Journal of Babylon university, Pure snd Applied Science, 3(22). (2014).

Frisch M. J., G. W. Trucks, H. B. Schlegel et al., Gaussian 09, Revision A.02, Gaussian, Inc., PA, Wallingford CT. (2009).

A. G. Borisov, A. K. Kazansky, and J. P. Gauyacq, Phys.Rev. B,59, 16 10 935 (1999).

Charles Kittel., Introduction to solid state physics, (1991).

A.M. Lesk, Introduction to symmetry and group theory for chemists, Kluwer Academic Publishes, London, (2004).

Mc Grow-Hill, Fundamentals of molecular spectroscopy, (1972).

Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry:Introduction to Advanced Electronic Structure Theory, Dover Publications, Inc.:New York, (1989).

P. Udhayakala, T. V. Rajendiran, S. Seshadri, and S. Gunasekaran, Quantum chemical vibrational study, molecular property and HOMO-LUMO energies of 3-bromoacetophenone for Pharmaceutical application, J. Chem. Pharm. Res., 3, 610-625, (2011).

R.G. Pearson, Recent advances in the concept of hard and soft acids and bases, Journal of

Chem. Edu., 64(1987), 561-567.

Vipin Kumar, Esha V. Shah, Debesh R. Roy, Physica E, Low-dimensional Systems and Nanostructures, (2015).